High incidence of multidrug resistance and class 1 and 2 integrons in Escherichia coli isolated from broiler chickens in South of Iran

Document Type : Original Article

Authors

Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

Abstract

The objective was to investigate the multidrug resistance and presence of class 1 and 2 integrons in 300 Escherichia coli isolates obtained from 20 broiler farms during three rearing periods (one-day-old chicks, thirty-day-old chickens, and one day before slaughter) in Fars, South Iran. Results showed that 81.00%, 82.00%, and 85.00% of isolates were multidrug-resistant on the first day, thirty-day-old chickens, and one day before slaughter, respectively. Multidrug-resistant E. coli isolates were further examined for the presence of class 1 and 2 integrons using PCR assay. The existence of class 1 integron-integrase gene (intI1) was confirmed in 68.40%, 72.70%, and 60.90% of multidrug-resistant isolates from stage 1, stage 2, and stage 3 of the rearing period, respectively. The frequency of class 2 integron-integrase gene (intI2) during the first to the third stage of sampling was 2.60%, 25.50%, and 30.40%. Also, sequence analysis of the cassette arrays within class 1 integron revealed the presence of the genes associated with resistance for trimethoprim (dfrA), streptomycin (aadA), erythromycin (ereA), and orfF genes. The results revealed that percentages of antimicrobial resistance in E. coli isolates were significantly higher in the middle and end stages of the rearing period. In conclusion, widespread dissemination of class 1 integrons in all three stages and rising trends of class 2 integrons existence in E. coli isolates during the rearing period of broiler chickens could exacerbate the spread of resistance factors among bacteria in the poultry industry. Future research is needed to clarify its implication for human health.

Keywords


  1. Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: A review. Front Vet Sci 2017; 4:126. doi: 10.3389/fvets.2017.00126.
  2. Simoneit C, Burow E, Tenhagen B-A, et al. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken–a systematic review. Prev Vet Med 2015; 118(1): 1-7. doi: 10.1016/ j.prevetmed.2014.11.010.
  3. Gyles CL. Antimicrobial resistance in selected bacteria from poultry. Anim Health Res Rev 2008; 9(2):
    149-158.
  4. Apata DF. Antibiotic resistance in poultry. Int J Poult Sci 2009;8(4): 404-408.
  5. Deng Y, Bao X, Ji L, et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 2015; 14: 45. ‎ doi: 10.1186/s12941-015-0100-6.
  6. Stokes HW, Hall RM. A novel family of potentially mobile DNA elements encoding site‐specific gene‐integration functions: integrons. Mol Microbiol 1989; 3(12): 1669-1683.
  7. Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol 2017; 38: 10-15.
  8. Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol 2006; 4(8): 608-620.
  9. Stalder T, Barraud O, Casellas M, et al. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3: 119. doi: 10.3389/ fmicb.2012.00119.
  10. Leverstein-van Hall MA, M Blok HE, T Donders AR, et al. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 2003; 187(2): 251-259.
  11. Yang H, Chen S, White DG, et al. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J Clin Microbiol 2004; 42(8): 3483-3489.
  12. Nógrády N, Pászti J, Pikó H, et al. Class 1 integrons and their conjugal transfer with and without virulence-associated genes in extra-intestinal and intestinal Escherichia coli of poultry. Avian Pathol 2006; 35(4): 349-356.
  13. Kim TE, Jeong YW, Cho SH, et al. Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. J Clin Microbiol 2007; 45(10): 3309-3315.
  14. Dessie HK, Bae DH, Lee YJ. Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Poult Sci 2013; 92(11): 3036-3043.
  15. Cavicchio L, Dotto G, Giacomelli M, et al. Class 1 and class 2 integrons in avian pathogenic Escherichia coli from poultry in Italy. Poult Sci 2015; 94(6): 1202-1208.
  16. Li Y, Chen L, Wu X, et al. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Poult Sci 2015; 94(4): 601-611.
  17. Awad A, Arafat N, Elhadidy M. Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli. Ann Clin Microbiol Antimicrob 2016; 15(1): 59. doi: 10.1186/s12941-016-0174-9.
  18. Moser KA, Zhang L, Spicknall I, et al. The role of mobile genetic elements in the spread of antimicrobial resistant Escherichia coli from chickens to humans in small-scale production poultry operations in rural Ecuador. Am J Epidemiol 2017; 187(3): 558-567.
  19. Zibandeh S, Sharifiyazdi H, Asasi K, et al. Investigation of tetracycline resistance genes in Escherichia coli isolates from broiler chickens during a rearing period in Iran. Vet Arh 2016; 86(4): 565-572.
  20. Abdi-Hachesoo B, Asasi K, Sharifiyazdi H. Farm-level evaluation of enrofloxacin resistance in Escherichia coli isolated from broiler chickens during a rearing period. Comp Clin Pathol 2017; 26: 471-476.
  21. Quinn PJ, Carter ME, Carter GR, et al. Clinical veterinary microbiology. 2nd ed. London, UK: Wolfe Publishing 1994; 209-236.
  22. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. 4th ed. Wayne, USA: CLSI 2013.
  23. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 26th ed. Wayne, USA: CLSI 2016; M100S.‎
  24. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3): 268-281.
  25. Holmes DS, Quiqley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 1981; 114(1): 193-197.
  26. Su J, Shi L, Yang L, et al. Analysis of integrons in clinical isolates of Escherichia coli in China during the last six years. FEMS Microbiol Lett 2006; 254(1): 75-80.
  27. Zhang H, Shi L, Li L, et al. Identification and charac-terization of class 1 integron resistance gene cassettes among Salmonella strains isolated from healthy humans in China. Micribiol Immunol 2004; 48(9): 639-645.
  28. Petersen A, Christensen JP, Kuhnert P, et al. Vertical transmission of a fluoroquinolone-resistant Escherichia coli within an integrated broiler operation. Vet Microbiol 2006; 116(1-3): 120-128.
  29. Nilsson O, Börjesson S, Landén A, et al. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J Antimicrob Chemother 2014; 69(6): 1497-1500.
  30. Ozaki H, Esaki H, Takemoto K, et al. Antimicrobial resistance in fecal Escherichia coli isolated from growing chickens on commercial broiler farms. Vet Microbiol 2011; 150(1-2): 132-139.
  31. Bortolaia V, Bisgaard M, Bojesen AM. Distribution and possible transmission of ampicillin-and nalidixic acid-resistant Escherichia coli within the broiler industry. Vet Microbiol 2010; 142(3-4): 379-386.
  32. Saleha AA, Myaing TT, Ganapathy KK, et al. Possible effect of antibiotic-supplemented feed and environment on the occurrence of multiple antibiotic resistant Escherichia coli in chickens. Int J Poult Sci 2009; 8(1): 28-31.
  33. Dierikx CM, van der Goot JA, Smith HE, et al. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS ONE 2013; 8(11): e79005. doi:10.1371/journal.pone.0079005.
  34. Ginns CA, Browning GF, Benham ML, et al. Antimicrobial resistance and epidemiology of Escherichia coli in broiler breeder chickens. Avian Pathol 1996; 25(3): 591-605.
  35. Witte W. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int J Antimicrob Agents 2000; 14(4): 321-325.
  36. Smith JL, Drum DJV, Dai Y, et al. Impact of antimicrobial usage on antimicrobial resistance in commensal Escherichia coli strains colonizing broiler chickens. Appl Environ Microbiol 2007; 73(5): 1404-1414.
  37. da Costa PM, Bica A, Vaz-Pires P, et al. Effects of antimicrobial treatment on selection of resistant Escherichia coli in broiler fecal flora. Microb Drug Resist 2008; 14(4): 299-306.
  38. van den Bogaard AE, London N, Driessen C, et al. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 2001; 47(6): 763-771.
  39. Miles TD, McLaughlin W, Brown PD. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res 2006; 2: 7. doi: 10.1186/1746-6148-2-7.
  40. Vasilakopoulou A, Psichogiou M, Tzouvelekis L, et al. Prevalence and characterization of class 1 integrons in Escherichia coli of poultry and human origin. Foodborne Pathog Dis 2009; 6(10): 1211-1218.
  41. Goldstein C, Lee MD, Sanchez S, et al. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 2001; 45(3): 723-726.
  42. Povilonis J, Šeputienė V, Ružauskas M, et al. Transferable class 1 and 2 integrons in Escherichia coli and Salmonella enterica isolates of human and animal origin in Lithuania. Foodborne Pathog Dis 2010; 7(10): 1185-1192.
  43. Ahmed AM, Shimamoto T, Shimamoto T. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Int J Med Microbiol 2013; 303(8): 475-483.
  44. Kheiri R, Akhtari L. Antimicrobial resistance and integron gene cassette arrays in commensal Escherichia coli from human and animal sources in IRI. Gut Pathog 2016; 8(1): 40. doi: 10.1186/s13099-016-0123-3.
  45. Piccirillo A, Giovanardi D, Dotto G, et al. Antimicrobial resistance and class 1 and 2 integrons in Escherichia coli from meat turkeys in Northern Italy. Avian Pathol 2014; 43(5): 396-405.
  46. Bass L, Liebert CA, Lee MD, et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 1999;43(12): 2925-2929.
  47. Oosterik LH, Peeters L, Mutuku I, et al. Susceptibility of avian pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and integron prevalence. Avian Dis 2014; 58(2): 271-278.
  48. Soufi L, Sáenz Y, Vinué L, et al. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. Int J Food Microbiol 2011; 144(3): 497-502.
  49. Cocchi S, Grasselli E, Gutacker, et al. Distribution and characterization of integrons in Escherichia coli strains of animal and human origin. FEMS Immunol Med Microbiol 2007; 50(1): 126-132.