Document Type : Original Article

Authors

1 PhD Candidate, Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

3 Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

Fasciolosis is a zoonotic parasitic disease caused by the trematode Fasciola hepatica. The proteases are essential for the survival of parasites. The present study was aimed to determine serine proteases activities in miracidia of F. hepatica and evaluate the effects of pH and different inhibitors on the serine proteases activities. Adult F. hepatica helminths were removed from naturally infected livers of the slaughtered cattle and crushed. The eggs were incubated at 28.00 ˚C for 16 days. The released miracidia were homogenized and total proteolytic activity of the extract of miracidia at different pH values were evaluated. Serine proteases activities were determined using specific substrates. The inhibitory effects of chemical and herbal inhibitors on the enzymes were also assessed. The extract of miracidia hydrolyzed azocasein with optimum activity at pH 8.00. The optimum pH effect on serine proteases activities was found at alkaline pH. Phenylmethylsulfonyl fluoride and Bowman-Birk inhibitors inhibited and decreased the proteases activities in the miracidia extract. It was concluded that there were proteases activities in miracidia of F. hepatica which were inhibited by chemical and herbal inhibitors.

Keywords

  1. Yakhchali M, Bahramnejad K. Inhibition effect of pH on the hatchability of Fasciola miracidia under laboratory conditions. Iran J Parasitol 2016; 11(1): 30-34.
  2. Mas-Coma S. Epidemiology of fascioliasis in human endemic areas. J Helminthol 2005; 79(3): 207-216.
  3. McManus DP, Dalton JP. Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica and Fasciola gigantica. Parasitology 2006; 133 Suppl: S43-S61.
  4. Piedrafita D, Spithill TW, Smith RE, et al. Improving animal and human health through understanding liver fluke immunology. Parasite Immunol 2010; 32(8):572-581.
  5. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2016; 44(D1): D343-D350.
  6. Dalton JP, Heffernan M. Thiol proteases released in vitro by Fasciola hepatica. Mol Biochem Parasitol 1989; 35(2):161-166.
  7. Wijffels GL, Salvatore L, Dosen M, et al. Vaccination of sheep with purified cysteine proteinases of Fasciola hepatica decreases worm fecundity. Exp Parasitol 1994; 78(2):132-148.
  8. Cocude C, Pierrot C, Cêtre C, et al. Identification of a developmentally regulated Schistosoma mansoni serine protease homologous to mouse plasma kallikrein and human factor I. Parasitology 1999; 118 (Pt 4):389-396.
  9. Da'dara A, Skelly PJ. Manipulation of vascular function by blood flukes? Blood Rev 2011; 25(4):175-179.
  10. Horn M, Fajtová P, Rojo Arreola L, et al. Trypsin- and Chymotrypsin-like serine proteases in Schistosoma mansoni-- 'the undiscovered country'. PLoS Negl Trop Dis 2014; 8(3): e2766. doi: 10.1371/journal.pntd. 0002766.
  11. Fajtová P, Ŝtefanic S, Hradilek M, et al. Prolyl oligopeptidase from the blood fluke Schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl Trop Dis 2015; 9(6): e0003827. doi: 10.1371/journal.pntd.0003827.
  12. Dvořák J, Fajtová P, Ulrychová L, et al. Excretion/ secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie 2016; 122:99-109.
  13. Jílková A, Řezáćova P, Lepŝík M, et al. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J Biol Chem 2011; 286(41):35770-35781.
  14. Molina-Hernández V, Mulcahy G, Pérez J, et al. Fasciola hepatica vaccine: we may not be there yet but we're on the right road. Vet Parasitol 2015; 208(1-2):101-111.
  15. Yang Y, Wen YJ, Cai YN, et al. Serine proteases of parasitic helminths. Korean J Parasitol 2015; 53(1):1-11. doi: 10.3347/kjp.2015.53.1.1.
  16. Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 2002; 120(1):1-21. doi: 10.1016/s0166-6851(01)00438-8.
  17. Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it's a family affair. Trends Biochem Sci 2008; 33(12):601-608.
  18. Kasný M, Mikes L, Hampl V, et al. Chapter 4. Peptidases of trematodes. Adv Parasitol 2009; 69:205-297.
  19. Mc Veigh P, Maule AG, Dalton JP, et al. Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect 2012; 14(4):301-310.
  20. Ingram JR, Rafi SB, Eroy-Reveles AA, et al. Investigation of the proteolytic functions of an expanded cercarial elastase gene family in Schistosoma mansoni. PLoS Negl Trop Dis 2012; 6(4): e1589. doi: 10.1371/journal. pntd.0001589.
  21. Lipke H, Fraenkel GS, Liener IE. Growth inhibitors. Effects of soybean inhibitors on growth of Tribolium confusum. J. Agric. Food Chem.1954; 2: 410-414.
  22. Pannetier C, Giband M, Couzi P, et al. Introduction of new traits into cotton through genetic engineering: insect resistance as example. Euphytica 1997; 96(1): 163-166.
  23. Koiwa H, Shade RE, Zhu-Salzman K, et al. Phage display selection can differentiate insecticidal activity of soybean cystatins. Plant J 1998; 14(3):371-379.
  24. Huber R, Carrell RW. Implications of the three-dimensional structure of. Alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 28(23):8951-8966.
  25. Dalton JP, Clough KA, Jones MK, et al. The cysteine proteinases of Schistosoma mansoni Parasitology 1997; 114 (Pt 2):105-112.
  26. Soulsby EJL. Helminths, arthropods and protozoa of domesticated animals. 7th London, UK: Baillière Tindall, 1982; 800-809.
  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of ‎protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-254. ‎
  28. Elpidina EN, Vinokurov KS, Gromenko VA, et al. Compartmentalization of proteinases and ‎Amylasesin Nauphoeta cinerea. midgut. Arch Insect Biochem Physiol 2001; 48(4):206-216.‎
  29. Erlanger BF, Kokowsky N, Cohen W. The preparation and properties of two new ‎chromogenic substrates of trypsin. Arch Biochem Biophys 1961; 95:271-278.
  30. Erlanger BF, Cooper AG, Bendich AJ. On the hetero-geneity of three-times-crystallized α-‎ Biochemistry 1964; 3(12):1880-1883. ‎
  31. Da Silva-Lopez RE, Giovanni-De-Simone S. Leishmania (Leishmania) amazonensis: ‎purification and characterization of a promastigote serine protease. Exp Parasitol 2004; 107(3-‎‎4):173-182. ‎
  32. Kakade ΜL, Simons Ν, Liener ΙΕ. An evaluation of natural vs. synthetic substrates for ‎measuring the antitrypsin activities of soybean samples. Cereal Chem 1969; 46: 518-526. ‎
  33. Jiraungkoorskul W, Sahaphong S, Tansatit T, et al. Eurytrema pancreaticum: the in vitro ‎effect of praziquantel and triclabendazole on the adult fluke. Exp Parasitol 2005; 111(3):172-‎‎ ‎
  34. McKerrow JH, Jones P, Sage H, et al. Proteinases from invasive larvae of the trematode ‎parasite Schistosorna rnansoni degrade connective-tissue and basement-membrane ‎ Biochem J 1985; 231(1): 47-51.‎
  35. Ribeiro de Andrade A, Santoro MM, Melo NM, et al. Leishmania (Leishmania) amazonensis: ‎purification and characterization of a soluble serine oligo-peptidase from promastigotes. Exp ‎Parasitol 1998; 89(2): 153-160.‎
  36. Michalski WP, Crooks JK, Prowse SJ. Purification and characterization of a serine-type ‎protease from Eimeria tenella Int J Parasitol 1994; 24(2): 189-195.‎
  37. Geiger R, Fritz H. Trypsin. In: Bergmeyer HU (Ed). Methods of enzymatic analysis. Vol 5. ‎Weinheim, Germany: Verlag-Chemie 1984; 119-129.‎
  38. Johnston K, Lee MJ, Brough C, et al. Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes. Insect Biochem Mol Biol ‎‎1995; 25(3):375-383. ‎
  39. Mohamed SA, Fahmy AS, Mohamed TM, et al. Proteases in egg, miracidium and adult of ‎Fasciola gigantica, Characterization of serine and cysteine proteases from adult. Comp ‎Biochem Physiol B Biochem Mol Biol 2005; 142(2):192-200.
  40. Fagbemi BO, Hillyer GV. The purification and characterization of a cysteine protease of Fasciola gigantica adult worms. Vet Parasitol 1992; 43(3-4):223-232.
  41. Yamakami K, Hamajima F. A neutral thiol protease secreted from newly excysted metacercariae of trematode parasite Paragonimus westemani: purification and characterization. Comp. Biochem Physiol B 1990; 95(4): 755-758.
  42. Ghoneim H, Klinkert MQ. Biochemical properties of purified cathepsin B from Schistosoma mansoni. Int J Parasitol 1995; 25(12): 1515-1519.
  43. Auriault C, Pierce R, Cesari IM, et al. Neutral protease activities at different developmental stages of Schisto-soma mansoni in mammalian hosts. Comp Biochem Physiol B Biochem Mol Biol 1982; 72(3):377-384.
  44. Smith AM, Dowd AJ, Heffernan M, et al. Fasciola hepatica: a secreted cathepsin L-like proteinase cleaves host immunoglobulin. Int J Parasitol 1993; 23(8):977-983.
  45. Harmsen MM, Cornelissen JBWJ, Buijs HECM, et al. Identification of a novel Fasciola hepatica cathepsin L protease containing protective epitopes within the propeptide. Int J Parasitol 2004; 34(6):675-382.
  46. Rege NN, Nazareth HM, Isaac A, et al. Immuno-therapeutic modulation of intraperitoneal adhesions by Asparagus racemosus. J Postgrad Med 1989; 35(4):199-203.
  47. Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980; 49:593-626.
  48. Hines ME, Nielsen SS, Shade RE, et al. The effect of two proteinase inhibitors, E-64 and the Bowman-Birk inhibitor, on the developmental time and mortality of Acanthoscelides obtectus. Entomol Exp Appl 1990; 57(3): 201-207.
  49. Johnston KA, Lee MJ, Gatehouse JA, et al. The partial purification and characterisation of serine protease activity in midgut of larval Helicoverpa armigera. Insect Biochem Mol Biol 1991; 21(4):389-397.
  50. Broadway RM, Duffey SS. The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 1986; 32(8):673-680.