Prevalence of Shiga toxin-producing Escherichia coli and Salmonellae and some associated hematologic and biochemical profile alterations in lambs

Document Type : Original Article

Authors

1 Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt

2 Department of Clinical Pathology, Animal Health Research Institute, Kafr El Sheikh Branch, Agriculture Research Center, Giza, Egypt

3 Unit of Bacteriology, Animal Health Research Institute, Kafr El Sheikh Branch, Agriculture Research Center, Giza, Egypt

4 Department of Animal Medicine, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt

Abstract

Lamb enteritis constitutes an economic burden on sheep production worldwide. We aimed to estimate the prevalence of Shiga toxin-producing Escherichia coli (STEC) and Salmonellae among diarrheic lambs at Kafrelsheikh Governorate, Egypt and to detect the associated clinical, hematologic, biochemical, and antioxidant parameters. Fifty diarrheic and twenty apparently healthy control lambs were examined clinically, and hematologically. Diarrheic lambs had a significant elevated body temperature, respiratory and pulse rate, most of hemogram para-meters, total proteins and albumin, oxidative stress markers malonaldiahyde and nitric oxide levels, liver enzymes, urea and creatinine than control group. On the other hand, these diarrheic lambs had significant reduction in total leukocyte count and lymphocytes, antioxidant biomarkers super oxide dismutase activities and reduced glutathione than control lambs. E. coli and Salmonella spp. were isolated from 32.00% and 16.00% of diseased lambs, respectively. Serotyping and biochemical tests of examined samples identified 16 E. coli isolates belonged to 10 different serotypes; O6, O8, O26:H11, O75, O84:H21, O103:H2, O114:H4, O121:H7, O128:H2 and O163:H2. All isolates are STEC as they harbor either Shiga-toxin 1 or Shiga-toxin 2 genes or both. One isolate carries intimin gene (eaeA) and classified as EHEC; O26:H11. The obtained nine isolates of Salmonella carry enterotoxin (Stn) genes, eight of them carry hyper-invasive locus (hilA) gene, all isolates belonged to six serotypes; S. Enteritidis, S. Heidelberg, S. Tsevie, S. Typhimurium, S. Essen, and S. Infantis. Lamb diarrhea was prevalent in the studied area and might constitute a veterinary and public health threat. Alteration in hemato-biochemical para-meters and oxidative–anti-oxidant balance could help adopt appropriate treatment regimens.

Keywords


  1. Kong LC, Wang B, Wang YM, et al. Characterization of bacterial community changes and antibiotic resistance genes in lamb manure of different incidence. Sci Rep 2019; 9(1):10101. doi:10.1038/s41598-019-46604-y.
  2. Hassan N, Sheikh GN, Hussain SA, et al. Variation in clinical findings associated with neonatal colibacillosis in lambs before and after treatment. Vet World 2014; 7(4): 262-265.
  3. Javed S, Rafeeq M, Tariq MM, et al. Study on in-vitro biochemical growth characterization and assessment of hemolytic toxin of Clostridium perfringens type B and D. Pakistan J. Zool 2012; 44(6): 1575-1580.
  4. Stanger KJ, McGregor H, Larsen J. Outbreaks of diarrhoea (‘winter scours’) in weaned Merino sheep in south-eastern Australia. Aust Vet J 2018; 96(5): 176-183.
  5. Muktar Y, Mamo G, Tesfaye B, et al. A review on major bacterial causes of calf diarrhea and its diagnostic method. J Vet Med Anim Health 2015; 7(5): 173-185.
  6. Cho Y, Yoon KJ. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J Vet Sci 2014; 15(1): 1-17.
  7. Askari Badouei M, Lotfollahzadeh S, Arman M, et al. Prevalence and resistance profiles of enteropathogenic and Shiga toxin- producing Escherichia coli in diarrheic calves in Mashhad and Garmsar districts, Iran. Avicenna J Clin Microbiol Infect 2014; 1(3): 22802. doi:10.17795/ajcmi-22802.
  8. Yang R, Jacobson C, Gardner G, et al. Longitudinal prevalence, faecal shedding and molecular characterization of Campylobacter and Salmonella enterica in sheep. Vet J 2014; 202(2), 250-254.
  9. Radostits OM, Gay C, Hinchcliffe KW, et al. Veterinary medicine - A textbook of the diseases of cattle, horses, sheep, pigs and goats. 10th Philadelphia USA: W. B. Saunders Ltd 2007; 2065.
  10. Skyberg JA, Logue CM, Nolan LK. Virulence genotyping of Salmonella with multiplex PCR. Avian Dis 2006; 50(1): 77-81.
  11. Ghanbarpour R, Askari N, Ghorbanpour M, et al. Genotypic analysis of virulence genes and antimicrobial profile of diarrheagenic Escherichia coli, isolated from diseased lambs in Iran. Trop Anim Health Prod 2017; 49(3): 591-597.
  12. Bandyopadhyay S, Mahanti A, Samanta I, et al. Virulence repertoire of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic Escherichia coli (ETEC) from diarrheic lambs of Arunachal Pradesh, India. Trop Anim Health Prod 2011; 43(3): 705-710.
  13. Singh M, Gupta VK, Mondal DB, et al. A study on alteration in haemato-biochemical parameters in Colibacillosis affected calves. Int J Adv Res 2014; 2(7): 746-750.
  14. Feldman BF, Zinkl JG, Jain NC. Schalm’s veterinary hematology. 5th Philadelphia, USA: Lippincott Williams & Wilkins 2000; 21-100.
  15. Abelson JN, Simon MI. Methods in enzymology. Vol. 186-part. New York, USA: Academic Press Inc.
    1990; 251.
  16. Pertile TL, Sharma JM, Walser MM. Reovirus infection in chickens primes splenic adherent macrophages to produce nitric oxide in response to T cell-produced factors. Cell Immunol 1995; 164(2): 207-216.
  17. Henry RJ, Cannon DC, Winkelman JW. Clinical Chemistry: Principles and techniques. 11th New York, USA: Happer and Row Publishers 1974; 1629.
  18. Kaneko JJ, Harvey JW, Bruss ML. Clinical biochemistry of domestic animals. 6th Massachusetts, USA: Academic press 2008; 146-159.
  19. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Path 1957; 28(1): 56-63.
  20. Rec GSCC. Optimised standard colorimetric methods. Serum alkaline phosphatase. (DGKC): J Clin Chem Clin Biochem 1972; 10: 182-182.
  21. Nagy FM, Taha NM, Mandour AWA, et al. The biochemical effects of berberine on hyperlipidemia and insulin resistance in rats fed high fat diet. Alex J Vet Sci 2016; 51(2): 142-147.
  22. Patton CJ, Crouch SR. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal Chem 1977; 49(3): 464-469.
  23. Young DS. Effect of drugs on clinical laboratory tests, 3rd Washington, USA: AACC Press 1990;122-131.
  24. Esterbauer H, Cheeseman KH, Dianzani MU, et al. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J 1982; 208(1): 129-140.
  25. Aebi H. Catalase in vitro. Methods Enzymol 1984;105: 121-126.
  26. Quinn PJ, Markey BK, Leonard FC, et al. Veterinary microbiology and microbial diseases. 2nd New Jersey, USA: Wiley-Blackwell 2011; 84-96.
  27. Collee JG, Marmion BP, Fraser AG, et al. Mackie & McCartney practical medical microbiology. 14th New York, USA: Churchill Livingstone1996; 486.
  28. Kreig NR, Holt JC. Bergey's manual of systemic bacteriology. 2nd Baltimore, USA: William and Wilkins M.D. 1984; 964.
  29. Kok T, Worswich D, Gowans E. Some serological techniques for microbial and viral infections. In: Collee JG, Fraser AG, Marmion BP, et al. (Eds). Mackie & McCartney practical medical microbiology. 14th Edinburgh, UK: Churchill Livingstone 1996; 978.
  30. Kauffman G. Kauffmann white scheme. J Acta Pathol Microbiol Scand 1974; 61: 385.
  31. Sambrook J, Fritsch ER, Maniatis T. Molecular cloning: a laboratory manual. 2nd New York, USA: Cold Spring Harbor Laboratory Press 1989; 1,659.
  32. Schoenian S. Small ruminant info sheet: Diarrhea (scours) in small ruminants. Available at: https://u.osu. edu/ sheep/ 2019/ 06/ 11/ diarrhea-scours-in-small-ruminants/. Accessed April 1, 2022.
  33. Mgongo FO, Gombe S, Ogaa JS. The influence of cobalt/vitamin B deficiency as “stressor” affecting adrenal cortex and ovarian activities in goats. Reprod Nutr Dev 1984; 24(6): 845-854.
  34. Naylor JM. Neonatal ruminant diarrhea. In: Smith, BP (Ed). Large animal internal medicine. 3rd Missouri, USA: Mosby 2002; 352-366.
  35. Guzelbektes H, Coskun A, Sen I. Relationship between the degree of dehydration and the balance of acid-based changes in dehydrated calves with diarrhoea. Bull Vet Inst Pulawy 2007; 51(1): 83-87.
  36. Ghanem MM, Abd El-Raof YM. Clinical and haemato-biochemical studies on lamb coccidiosis and changes following amprolium and sulphadimethoxine therapy. Benha Vet Med J 2005; 16(2): 286-300.
  37. Ahmed WM, Hassan SE. Applied studies on coccidiosis in buffalo-calves with special reference to oxidant/ antioxidant status. World J Zool 2007; 2(2): 40-48.
  38. Wani SA, Hussain I, Beg SA, et al. Diarrhoeagenic Escherichia coli and salmonellae in calves and lambs in Kashmir absence: prevalence and antibiogram. Rev Sci Tech 2013; 32(3): 833-840.
  39. Nasr M, Bakeer NM, Hammouda HA, et al. Epidemiological, clinical and bacteriological studies on bacterial lamb enteritis at Behera province, Egypt. Alex J Vet Sci 2014; 43(1): 8-16.
  40. Sweeny JP, Ryan UM, Robertson ID, et al. Prevalence and on-farm risk factors for diarrhoea in meat lamb flocks in Western Australia. Vet J 2012; 192(3): 503-510.
  41. Younis EE, Ahmed AM, El-Khodery SA, et al. Molecular screening and risk factors of entero-toxigenic Escherichia coli and Salmonella in diarrheic neonatal calves in Egypt. Res Vet Sci 2009; 87(3): 373-379.
  42. Moussa IM, Ashgan MH, Mohamed MS, et al. Rapid detection of Salmonella species in newborne calves by polymerase chain reaction. Int J Genet Mol Biol 2010; 2(4): 62-66.
  43. Bendali F, Bichet H, Schelcher F, et al. Pattern of diarrhoea in newborn beef calves in south-west France. Vet Res 1999; 30(1): 61-74.
  44. Azzam RA, Hassan WH, Ibrahim MA, et al. Prevalence of verocytotoxigenic coli O157: H7 in cattle and man in Beni-Sueif Government. Alex J Vet 2006; 24(1): 111-122.
  45. Osman KM, Mustafa AM, Elhariri M, et al. The distribution of Escherichia coli serovars, virulence genes, gene association and combinations and virulence genes encoding serotypes in pathogenic E. coli recovered from diarrhoeic calves, sheep and goat. Transbound Emerg Dis 2013; 60(1): 69-78.
  46. Aref NM, Abdel-Raheem AA, Kamaly HF, et al. Clinical and sero-molecular characterization of Escherichia coli with an emphasis on hybrid strain in healthy and diarrheic neonatal calves in Egypt. Open Vet J 2018; 8(4): 351-359.
  47. Prager R, Fruth A, Busch U, et al. Comparative analysis of virulence genes, genetic diversity, and phylogeny of Shiga toxin 2g and heat-stable enterotoxin STIa encoding Escherichia coli isolates from humans, animals, and environmental sources. Int J Med Microbiol 2011; 301(3): 181-191.
  48. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin producing Escherichia coli Clin Microbiol Rev 1998; 11(3): 450-479.
  49. Makino S, Kurazono H, Chongsanguam, M, et al. Establishment of the PCR system specific to Salmonella spp. and its application for the inspection of food and fecal samples. J Vet Med Sci 1999; 61(11): 1245-1247.
  50. Guo X, Chen J, Beuchat L, et al. PCR detection of Salmonella enterica serotype Montevideo in and on raw tomatoes using primers derived from hilA. Appl Environ. Microbiol 2000; 66(12): 5248-5252.
Volume 13, Issue 2
June 2022
Pages 155-162
  • Receive Date: 04 April 2020
  • Revise Date: 02 May 2020
  • Accept Date: 01 June 2020
  • First Publish Date: 05 April 2022