Document Type : Original Article

Authors

Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran

Abstract

To search endophytic bacteria diversity and evaluate their antibacterial activity, healthy medicinal plant of Scrophularia striata was chosen in this study. One hundred endophytic bacteria were isolated from surface-sterilized tissues (root, stem and leaf) of S. striata. Using sequence analysis targeting 16S rRNA gene, eight genera, including Agrococcus, Arthrobacter, Bacillus, Chryseobacterium, Delftia, Kocuria, Pseudomonas and Sphingomonas were identified. Antibacterial activity of endophytic bacteria was examined against some test bacteria, employing agar well diffusion method. Out of 31 endophytic bacterial isolates, 24(77.42%) isolates showed significant antimicrobial activity against Bacillus cereus, 17(54.84%) isolates exhibited maximum activity against Staphylococcus aureus, 14(45.16%) isolates against Escherichia coli and 5(16.13%) isolates showed positive activity against Proteus mirabilis.The results obtained in this study suggested that the medicinal plant, S. striatais is a potent source of endophytic bacteria with antibacterial activity and offers promise for discovery of more impressive biological compounds.

Keywords

  1. Ryan RP, Germaine K, Franks A, et al. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 2008; 278(1): 1-9.
  2. Strobel G. The emergence of endophytic microbes and their biological J Fungi (Basel) 2018; 4(2): 57. doi: 10.3390/jof4020057.
  3. Akinsanya MA, Goh JK, Lim SP, et al. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiol Lett 2015; 362(23): fnv184. doi: 10.1093/ femsle/fnv184.
  4. Amiri H, Lari Yazdi H, Esmaeili A, et al. Essential oil composition and anatomical study of Scrophularia striata Iran J Med Aromat Plants 2011; 27(2): 271-278.
  5. Nazari M, Pakzad I, Maleki A, et al. Comparison of in vitro inhibitory effects of different extracts of Scrophularia striata plant on Staphylococcus aureus, Pseudomonas aeruginosa and Helicobacter pylori. J Ilam Uni Med Sci 2014; 22(3): 67-72.
  6. Azhdari Zarmehri H, Nazemi S, Ghasemi E, et al. Assessment of effect of hydro-alcoholic extract of Scrophularia striata on burn healing in rat. J Babol Univ Med Sci 2014; 16(5): 42-48.
  7. Chen T, Chen Z, Ma GH, et al. Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 2014; 13(3): 4918-4931.
  8. Qin S, Li J, Chen HH, et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75(19): 6176-6186.
  9. Krishnan P, Bhat R, Kush A, et al. Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 2012; 113(2): 308-317.
  10. Lumactud R, Shen SY, Lau M, et al. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Front Microbiol 2016; 7: 755. doi: 10.3389/fmicb. 2016.00755.
  11. Yoon SH, Ha SM, Kwon S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67(5): 1613-1617.
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406-425.
  13. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6(2): 71-79.
  14. Gottardi W, Nagl M. Which conditions promote a remanent (persistent) bactericidal activity of chlorine covers? Zentralbl Hyg Umweltmed 1998; 201(4-5): 325-335.
  15. Singh R, Dubey AK. Diversity and applications of endophytic Actinobacteria of plants in special and other ecological niches. Front Microbiol 2018; 9: 1767. doi: 10.3389/fmicb.2018.01767.
  16. Forchetti G, Masciarelli O, Alemano S, et al. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 2007; 76(5): 1145-1152.
  17. Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 2004; 50(4): 239-249.
  18. Tan D, Fu L, Han B, et al. Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana fusarium wilt. PLoS ONE 2015; 10(7): e0131974. doi: 10.1371/journal.pone.0131974.
  19. Vega FE, Pava-Ripoll M, Posada F, et al. Endophytic bacteria in Coffea arabica J Basic Microbiol 2005; 45(5): 371-380.
  20. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4): 845-857.
  21. Nam YD, Park SL, Lim SI. Microbial composition of the Korean traditional food "kochujang" analyzed by a massive sequencing technique. J Food Sci 2012; 77(4): M250-M256.
  22. Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71(9): 4951-4959.
  23. Jeong H, Jeong DE, Kim SH, et al. Draft genome sequence of the plant growth-promoting bacterium Bacillus siamensis KCTC 13613T. J Bacteriol 2012; 194(15): 4148-4149.
  24. Ma L, Cao YH, Cheng MH, et al. Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek 2013; 103(2): 299-312.
  25. Rhoden SA, Garcia A, Santos e Silva MC, et al. Phylogenetic analysis of endophytic bacterial isolates from leaves of the medicinal plant Trichilia elegans A. Juss. (Meliaceae). Genet Mol Res 2015; 14(1): 1515-1525.
  26. Wu DQ, Ye J, Ou HY, et al. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 2011; 12: 438. doi.: 10.1186/1471-2164-12-438.
  27. Andersen SM, Johnsen K, Sørensen J, et al. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int J Syst Evol Microbiol 2000; 50(Pt 6): 1957-1964.
  28. Lick S, Kröckel L, Wibberg D, et al. Pseudomonas bubulae nov., isolated from beef. Int J Syst Evol Microbiol 2020; 70(1): 292-301.
  29. Chiellini C, Maida I, Emiliani G, et al. Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. Int Microbiol 2014; 17(3): 165-174.
  30. Huang HY, Li J, Zhao GZ, et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012; 62(Pt 7): 1576-1580.
  31. Kämpfer P, Glaeser SP, McInroy JA, et al. Cohnella rhizosphaerae nov., isolated from the rhizosphere environment of Zea mays. Int J Syst Evol Microbiol 2014; 64(Pt 5): 1811-1816.
  32. Kang YM, Lee CK, Cho KM. Diversity and antimicrobial activity of isolated endophytic bacteria from Deodeok (Codonopsis lanceolata) of different locations and ages. Afr J Microbiol Res 2013; 7(12): 1015-1028.
  33. Gong B, Wu P, Huang Z, et al. Enhanced degradation of phenol by Sphingomonas GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere 2016; 148: 388-394.
  34. Ma Y, Wang X, Nie X, et al. Microbial degradation of chlorogenic acid by a Sphingomonas sp. strain. Appl Biochem Biotechnol 2016; 179(8): 1381-1392.
  35. Li H, Feng ZM, Sun YJ, et al. Draft genome sequence of Sphingomonas sp. WG, a welan gum-producing strain. Genome Announc 2016; 4(1): e01709-15. doi: 10.1128/genomeA.01709-15.
  36. Gai Z, Wang X, Zhang X, et al. Genome sequence of Sphingomonas elodea ATCC 31461, a highly productive industrial strain of gellan gum. J Bacteriol 2011; 193(24): 7015-7016.
  37. Kim HS, Sang MK, Jung HW, et al. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot 2012; 32: 129-137.
  38. Domenech J, Reddy M, Kloepper JW, et al. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 2006; 51: 245. doi: 10.1007/s10526-005-2940-z.
  39. Kim HS, Sang MK, Jeun YC, et al. Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot 2008; 27 (3-5): 436-443.
  40. Montero-Calasanz MDC, Göker M, Rohde M, et al. Chryseobacterium hispalense nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63(Pt 12): 4386-4395.
  41. Blin K, Shaw S, Steinke K, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47(W1): W81-W87.
  42. Forni C, Riov J, Grilli Caiola M, et al. Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. J Gen Microbiol 1992; 138(2): 377-381.
  43. Munaganti RK, Muvva V, Konda S, et al. Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards. Braz J Microbiol 2016; 47(4): 1030-1038.
  44. Zhang J, Ma Y, Yu H. Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 2012; 62(Pt 11): 2731-2736.
  45. Wang WX, Kusari S, Sezgin S, et al. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 2015; 99(18): 7651-7662.
  46. Delbès C, Ali-Mandjee L, Montel MC. Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Appl Environ Microbiol 2007; 73(6): 1882-1891.
  47. Mounier J, Gelsomino R, Goerges S, et al. Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 2005; 71(11): 6489-6500.
  48. Flegler A, Runzheimer K, Kombeitz V, et al. Arthrobacter bussei nov., a pink-coloured organism isolated from cheese made of cow's milk. Int J Syst Evol Microbiol 2020; 70(5): 3027-3036.
  49. Gundlapally SR, Ara S, Sisinthy S. Draft genome of Kocuria polaris CMS 76or(T) isolated from cyanobacterial mats, McMurdo Dry Valley, Antarctica: an insight into CspA family of proteins from Kocuria polaris CMS 76or(T). Arch Microbiol 2015; 197(8): 1019-1026.