European pond turtle (Emys orbicularis persica) as a biomarker of environmental pollution in Golestan and Mazandaran provinces, Iran

Document Type: Original Article

Authors

1 Department of Environmental Science, Faculty of Environment and Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Veterinary Public Health and Animal Pathology, Faculty of Veterinary Medicine, University of Bologna, Bologna, Italy

3 Msc student, Department of Environmental Science, Faculty of Environment and Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Anthropogenic environmental changes are hypothesized as main reasons for animal species population declines. Heavy metals contamination is one of the worst threats to animals among human-caused threats. As most of the heavy metals bioaccumulate in organisms, analyzing concentrations of heavy metals in long living animals, such as turtles, would be very useful for biomonitoring of environmental quality. The European pond turtle is classified as a Near Threatened in the red list of International Union for Conservation of Nature. The objective of this study was to obtain information on heavy metals contamination in this species, as a sentinels, to evaluate the overall health of both the European pond turtles and their ecosystem in Golestan and Mazandaran provinces. Biological samples of 10 living and 15 dead European pond turtles were analyzed by atomic absorption spectrophotometer for Zn, Pb, Cu, and Cd contaminations. Highest concentration of Zn (202.6 ± 58.5 μg g-1), Cd (4.4 ± 1.3 μg g-1) and Cu (3.8 ± 1.7 μg g-1) was detected in livers and the highest accumulation of Pb (45.6 ±16.3 μg g-1) occurred in kidneys. Positive correlations were detected among Zn, Pb and Cd tissue concentrations and carapaces curve length. Heavy metal levels were higher in males than females. Heavy metals contamination of sampled turtles stood in high degree. However, there is clearly a need to evaluate heavy metals physiologic effects on European pond turtles.

Keywords


  1. Ficetola GF, Bernardi FD, Is the European pond turtle (Emys orbicularis) strictly ‎aquatic and carnivorous? Amphib Reptil 2006; 27(3): 445-447.‎
  2. Ottonello D, Salvidio S, Rosecchi E. Feeding habits of the European pond terrapin Emys orbicularis in Camargue (Rhône delta, Southern France). Amphib Repti 2005; 26(4): ‎‎562-565.‎
  3. ‎Schneeweiss N, Steinhauer C. Habitat use and migrations of a remnant population of the ‎European pond turtle, Emys oorbicularis (Linnaeus, 1758), depending on landscape structures in ‎Brandenburg, Germany. Mertensiella 1998; 10: 235-243.‎
  4. ‎Fritz U, Wischuf T. To the systematics of West-Asian-Southeast European turtles (genus Mauremys) (Reptilia: Testudines: Bataguridae)[German]. Zoologische ‎Abhandlungen-Staatliches Museum Fur Tierkunde In Dresden 1997; ‎‎49: 223-260.‎
  5. ‎Daszak P, Cunningham A, Hyatt A. Anthropogenic environmental change and the ‎emergence of infectious diseases in wildlife. Acta Tropica 2001; 78(2): 103-116.‎
  6. ‎Godley BJ, Thompson DR, Furness RW. Do heavy metal concentrations pose a threat ‎to marine turtles from the Mediterranean Sea? Marine Poll Bull 1999; 38(6): 497-502.‎
  7. ‎Flora S, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal ‎by chelation therapy. Indian J Med Res 2008; 128(4): 501-523.‎
  8. ‎Sepe A, Ciaralli L, Ciprotti M, et al. Determination of cadmium, chromium, lead and vanadium in six fish species ‎from the Adriatic Sea. Food Addit Contam 2003; 20(6): 543-552.‎
  9. ‎Kami HG, Hojati V, Pashaee Rad SH, et al. A biological study of the European pond turtle, Emys orbicularis persica, ‎and the Caspian pond turtle, Mauremys caspica caspica, in the Golestan and Mazandaran ‎provinces of Iran. Zool Middle East 2006; 37(1): 21-28.‎
  10. ‎Meyers-Schöne L, Walton BT. Turtles as monitors of chemical contaminants in the ‎environment. Rev Environ Contam Toxicol 1994; 135: 93-‎‎153.‎
  11. ‎Auffenberg W, Iverson J. Demography of terrestrial turtles In: Harless M, ‎Morlock H (Eds) Turtles: Perspectives and research. New York, USA: Wiley Interscience 1979;541-569.
  12. ‎Martínez-López E, Gómez-Ramírez P, Espín S, et al. Influence of a former mining area in the heavy metals ‎concentrations in blood of free-living Mediterranean pond turtles (Mauremys leprosa). ‎ Bull Environ Contam Toxicol 2017; 99(2): 1-6.‎
  13. Stohs S, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 1995; 18(2): 321-336.‎
  14. Kitana N, Callard IP. Effect of cadmium on gonadal development in freshwater turtle ‎‎(Trachemys scripta, Chrysemys picta) embryos. J Environ Sci Health A 2008; 43(3): 262-271.‎
  15. Eisler R. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: A ‎synoptic review. Contaminant Hazard Reviews Report 1987; 85(1.11): 81-93.‎
  16. de Macêdo GR, Tarantino TB, Barbosa IS, et al. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil. ‎Marine Poll Bull 2015; 94(1): 284-289.‎
  17. ‎Yu S, Halbrook RS, Sparling DW, et al. Metal accumulation and evaluation of effects in a fresh water turtle. ‎Ecotoxicology 20(8): 1801-1812.‎
  18. ‎Adel M , Saravi HN, Dadar M, et al. Mercury, lead, and cadmium in tissues of the Caspian pond turtle (Mauremys caspica) from the southern basin of Caspian Sea. Environ Sci Pollut Res ‎‎24(4): 3244-3250.‎
  19. ‎Yadollahvand R, Kami HG, Mashroofeh A, et al. Assessment trace elements concentrations in tissues in Caspian pond ‎turtle (Mauremys caspica) from Golestan province, Iran. Ecotoxicol Environ Saf 2014; 101: 191-195.‎
  20. ‎Laurent S, Delphine F, Marc P, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, ‎physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): ‎ 2064-2110.‎
  21. ‎Sakai H, Saeki K, Ichihashi H, et al. Growth-related changes in heavy metal accumulation in green turtle ‎‎(Chelonia mydas) from Yaeyama Islands, Okinawa, Japan. Arch Environ Contam Toxicol 2000; 39(3): 378-385.‎
  22. ‎Andreani G, Santoro M, Cottignoli S, et al. Metal distribution and metallothionein in loggerhead (Caretta caretta) and ‎green (Chelonia mydas) sea turtles. Sci Total Environ 2008; 390(1): 287-294.‎
  23. ‎Kaska Y, Celik A, Bag H, et al. Heavy metal monitoring in stranded sea turtles along the Mediterranean ‎coast of Turkey. Fresen Environ Bull 2004; 13(8): 769-776.‎
  24. ‎Talavera-Saenz A, Gardner SC, Riosmena Rodriquez R, et al. Metal profiles used as environmental markers of green turtle ‎‎(Chelonia mydas) foraging resources. Sci Total Environ 2007; 373(1): 94-102.‎
  25. ‎Agusa T, Takagi K, Kubota R, et al. Specific accumulation of arsenic compounds in green turtles (Cheloniamydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan. ‎ Environ Pollut 2008; 153(1): 127-136.‎
  26. Storelli M , Storelli A, D'Addabbo R, et al. Trace elements in loggerhead turtles (Caretta caretta) from the eastern ‎Mediterranean Sea: Overview and evaluation. Environ Pollut 2005; 135(1): 163-170.‎
  27. U.S. Department of Health and Human Services. Toxicological Profile for Cadmium (Draft for Public Comment). Agency for Toxic Substances and Disease Registry, Atlanta: 1997.‎
  28. Barbieri E. Concentration of heavy metals in tissues of green turtles (Chelonia mydas) ‎sampled in the Cananéia estuary, Brazil. Braz J Oceanogr 2009; 57(3): 243-‎‎248.
  29. Overmann SR, Krajicek JJ. Snapping turtles (Chelydra serpentina) as biomonitors of ‎lead contamination of the Big River in Missouri's old lead belt. Environ Toxicol Chem 1995; 14(4): 689-695.‎
  30. ‎Kaur S. Lead in the scales of cobras and wall lizards from rural and urban areas of Punjab, ‎India. Sci Total Environ 1988; 77(2-3): 289-290.‎
  31. ‎Luza SC, Speisky HC. Liver copper storage and transport during development: ‎implications for cytotoxicity. Am J Clin Nutr 1996; 63(5): 812S-‎‎820S.‎
  32. ‎Albers P, Sileo L, Mulhern B. Effects of environmental contaminants on snapping ‎turtles of a tidal wetland. Arch Environ Contam Toxicol 1986; ‎‎15(1): 39-49.‎
  33. ‎García-Fernández AJ, Ramirez PJ, Lopez EM, et al. Heavy metals in tissues from loggerhead turtles (Caretta caretta) from the southwestern Mediterranean (Spain). Ecotoxicol Environ Saf 2009; 72(2): 557-563.‎
  34. ‎Torrent A, González-Díaz OM, Monagas P, et al. Tissue distribution of metals in loggerhead turtles (Caretta caretta) stranded ‎in the Canary Islands, Spain. Marine Poll Bull 2004; 49(9): 854-860.‎
  35. ‎Mashroofeh A, Bakhtiari AR, Pourkazemi M, et al. Bioaccumulation of Cd, Pb and Zn in the edible and inedible tissues of ‎three sturgeon species in the Iranian coastline of the Caspian Sea. Chemosphere 2013; 90(2): ‎‎573-580.‎
  36. ‎Bishop BE, Savitzky BA, Abdel-Fattah T. Lead bioaccumulation in emydid turtles of ‎an urban lake and its relationship to shell disease. Ecotoxicol Environ Saf 2010; 73(4): ‎ 565-571.‎
  37. ‎Christiansen JL, Burken RR. Growth and maturity of the snapping turtle (Chelydra serpentina) in Iowa. Herpetologica 1979; 261-266.‎
  38. Galbraith DA, Chandler MW, Brooks RJ. The fine structure of home ranges of male ‎Chelydra serpentina: are snapping turtles territorial? Can J Zool 1987; 65(11): ‎ 2623-2629.‎
  39. ‎Bergeron CM, Hopkins WA, Bodinof CM, et al. Counterbalancing effects of maternal mercury exposure during ‎different stages of early ontogeny in American toads. Sci Total Environ 2011; ‎‎409 (22): 4746-4752.‎
  40. Grillitsch B, Schiesari L. The Ecotoxicology of Metals in Reptiles. In: Sparling DW, Linder G, Bishop CA (Eds). Ecotoxicology of ‎amphibians and reptiles Boca Raton, USA: CRC Press ‎ 2010; 337-342.‎
  41. ‎Turnquist MA, Driscoll CT, Schulz KL, et al. Mercury concentrations in snapping turtles (Chelydraserpentina) ‎correlate with environmental and landscape characteristics. Ecotoxicol 2011; 20(7): 1599-‎‎1608.‎
  42. ‎Bjorndal KA. Foraging ecology and nutrition of sea turtles. In: Lutz PL. Musick JA (Eds) The biology of sea turtles. Boca Raton, USA: CRC Press 1997; 199-231.‎
  43. ‎ Anan Y, Kunito T, Watanabe r, et al. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and ‎green turtles (Chelonia mydas) from Yaeyama Islands, Japan. Environ Toxicol Chem 2001; 20(12): 2802-2814.‎
  44. ‎Day RD, Steven JC, Paul R, et al. Monitoring mercury in the loggerhead sea turtle, Caretta caretta. ‎ Environ Sci Technol 2005; 39(2): 437-446.‎
  45. ‎ Hermanussen S, Limpus C, Papke O, et al. Foraging Habitat Contamination Influences Green Sea Turtle PCDD/F Exposure. In proceedings: 26th International Symposium on Halogenated Persistent Organic Pollutants. Oslo, Norway 2006.