Document Type : Original Article

Authors

Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran

Abstract

Ovine pulmonary adenocarcinoma (OPA) is a model of human lung cancer‎ and fatal viral disease that causes neoplasia in sheep respiratory cells. ‎In the current study, 986 lung samples was inspected in the slaughterhouse, and finally twenty OPA ‎ lung organs were clinically diagnosed and five healthy lung organs were assigned as the control sample. Three SSCP patterns were detected for the affected lungs animals in comparison with the healthy lungs. In addition, sequencing results indicated three different single point mutations in exon 4 of TP53 within infected lungs, whereas no mutations were observed in exon 9 of this gene. Real-time PCR results showed up-regulation of the TP53 gene in all the infected lung cells compared to healthy cells. There was significant correlation between the mutations in exon 4 and OPAand can be used as a useful tool in determining the mechanism of lung cancer.

Keywords

  1. Gray ME, Meehan J, Sullivan P, et al. Ovine pulmonary adenocarcinoma: A unique model to improve lung cancer research. Front Oncol 2019; 9: 355. doi: 10.3389/fonc.2019.00335
  2. Youssef G, Wallace WA, Dagleish MP, et al. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2015; 56(1): 99-115.
  3. Mansour KA, Al-Husseiny SH, Kshash QH, et al. Clinical-histopathological and molecular study of ovine pulmonary adenocarcinoma in Awassi sheep in Al-Qadisiyah Province, Iraq. Vet World 2019; 12(3): 454-458.
  4. İlhan F, Vural SA, Yıldırım S, et al. Expression of p53 protein, Jaagsiekte sheep retrovirus matrix protein, and surfactant protein in the lungs of sheep with pulmonary adenomatosis. J Vet Diagn Invest 2016; 28(3): 249-256.
  5. Wootton SK, Metzger MJ, Hudkins KL, et al. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology 2006; 3(1): doi: 10.1186/1742-4690-3-94.
  6. Rai SK, Duh FM, Vigdorovich V, et al. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci U S A 2001; 98(8): 4443-4448.
  7. Hofacre A, Fan H. Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses 2010; 2(12): 2618-2648.
  8. Leroux C, Girard N, Cottin V, et al. Jaagsiekte Sheep Retrovirus (JSRV): from virus to lung cancer in sheep. Vet Res 2007; 38(2): 211-228.
  9. Mitsudomi T, Steinberg SM, Nau MM, et al. p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 1992; 7(1): 171-180.
  10. Sonawane GG, Tripathi BN, Kumar R, et al. Diagnosis and prevalence of ovine pulmonary adenocarcinoma in lung tissues of naturally infected farm sheep. Vet World 2016; 9(4): 365-370.
  11. Khodakaram-Tafti A, Razavi Z. Morphopathological study of naturally occurring ovine pulmonary adenocarcinoma in sheep in Fars province, Iran. Iran J Vet Res 2010; 11(2): 134-138.
  12. Mornex JF, Thivolet F, De las Heras M, et al. Pathology of human bronchioloalveolar carcinoma and its relationship to the ovine disease. Curr Top Microbiol Immunol 2003; 275: 225-248.
  13. Travis WD, Garg K, Franklin WA, et al. Bronchio-loalveolar carcinoma and lung adenocarcinoma: the clinical importance and research relevance of the 2004 World Health Organization pathologic criteria. J Thorac Oncol 2006; 1(9 Suppl): S13-S19.
  14. Lee HY, Lee KS, Han J, et al. Mucinous versus nonmucinous solitary pulmonary nodular bronchio-loalveolar carcinoma: CT and FDG PET findings and pathologic comparisons. Lung Cancer 2009; 65(2): 170-175.
  15. Shames DS, Wistuba II. The evolving genomic classification of lung cancer. J Pathol 2014; 232(2): 121-133.
  16. Palmarini M, Fan H. Retrovirus-induced ovine pulmonary adenocarcinoma, an animal model for lung cancer. J Natl Cancer Inst 2001; 93(21): 1603-1614.
  17. Maggiore C, Mulè A, Fadda G, et al. Histological classification of lung cancer. Rays 2004; 29(4):
    353-355.
  18. Linnerth-Petrik NM, Walsh SR, Bogner PN, et al. Jaagsiekte sheep retrovirus detected in human lung cancer tissue arrays.BMC Res Notes 2014;7:160. doi: 10.1186/1756-0500-7-160.
  19. Iannuzzi L, Palomba R, Di Meo G, et al. Comparative FISH-mapping of the prion protein gene (PRNP) on cattle, river buffalo, sheep and goat chromosomes. Cytogenet Cell Genet1998; 81(3-4): 202-204.
  20. Pollard TD, Earnshaw W, Lippincott-Schwartz J. Cell Biology: with student consult 2nd ed. Philadelphia, USA: Saunders 2007; 103-160.
  21. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98(20): 11598-11603.
  22. Yang WC, Mathew J, Velcich A, et al. Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosa. Canc Res 2001; 61(2): 565-569.
  23. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55(22): 5187-5190.
  24. Bancroft JD, Stevens A. Theory and practice of histological techniques. Edinburgh, UK: Churchill Livingstone 1990; 213-242.
  25. Campos PF, Gilbert TM. DNA extraction from formalin-fixed material. In: Shapiro B, Hofreiter M (Eds). Ancient DNA. New York, USA: Springer 2012; 81-85.
  26. Dequiedt F, Kettmann R, Burny A, et al. Mutations in the p53 tumor-suppressor gene are frequently associated with bovine leukemia virus-induced leukemogenesis in cattle but not in sheep. Virology 1995; 209(2): 676-683.
  27. Behn M, Schuermann M. Sensitive detection of p53 gene mutations by a ‘mutant enriched’ PCR-SSCP technique. Nucleic Acids Res 1998; 26(5): 1356-1358.
  28. Chang JS, Russell GC, Jann O, et al. Molecular cloning and characterization of Toll-like receptors 1-10 in sheep. Vet Immunol Immunopathol 2009; 127(1-2): 94-105.
  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25(4): 402-408.
  30. Johnson TM, Yu ZX, Ferrans VJ, et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 1996; 93(21): 11848-11852.
  31. García-Goti M, González L, Cousens C, et al. Sheep pulmonary adenomatosis: characterization of two pathological forms associated with jaagsiekte retrovirus. J Comp Pathol 2000; 122(1): 55-65.
  32. Cousens C, Alleaume C, Bijsmans E, et al. Jaagsiekte sheep retrovirus infection of lung slice cultures. Retrovirology 2015;12:31. doi: 10.1186/s12977-015-0157-5.
  33. Cousens C, Thonur L, Imlach S, et al. Jaagsiekte sheep retrovirus is present at high concentration in lung fluid produced by ovine pulmonary adeno-carcinoma-affected sheep and can survive for several weeks at ambient temperatures. Res Vet Sci 2009; 87(1): 154-156.
  34. Dong P, Tada M, Hamada J, et al. p53 dominant-negative mutant R273H promotes invasion and migration of human endometrial cancer HHUA cells. Clin Exp Metastasis 2007; 24(6): 471-483.
  35. Peng HQ, Hogg D, Malkin D, et al. Mutations of the p53 gene do not occur in testis cancer. Cancer Res 1993; 53(15): 3574-3578.
  36. Lowe SW, Ruley HE, Jacks T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74(6): 957-967.
  37. Hudachek SF, Kraft SL, Thamm DH, et al. Lung tumor development and spontaneous regression in lambs coinfected with Jaagsiekte sheep retrovirus and ovine lentivirus.Vet Pathol 2010; 47(1): 148-162.
  38. Hosseinrad H, Ashrafihelan A, Jafari Jozani R, et al. Study on relationship between ovine pulmonary adeno-carcinoma and P53 tumor suppressor gene mutation. Int J Appl Biol Pharm Technol 2016; 7(1): 19-
  39. Mohamadzadeh P, Mortazavi P, Sohrabi Haghdoost I. P53 mutation in ovine pulmonary adenomatosis. Indian J Sci Res 2014; 7(1): 606-617.
  40. Munday JS, Brennan MM, Kiupel M. Altered Expression of beta-catenin, E-cadherin, cycloxygenase-2, and p53 protein by ovine intestinal adenocarcinoma c Vet Pathol 2006; 43(5):613-621.
  41. Devilee P, Van Leeuwen IS, Voesten A, et al. The canine p53 gene is subject to somatic mutations in thypoid Anticancer Res 1994; 14(5A): 2039-2046.
  42. Lee CH, Kim WH, Lim JH, et al. Mutation and overexpression of p53 as a prognostic factor in canine mammary tumors. J Vet Sci 2004; 5(1): 63-
  43. Veldhoen N, Stewart J, Brown R, et al. Mutations of the p53 gene in canine lymphoma and evidence for germ line p53 mutations in the dog. Oncogene 1998; 16(2): 249-255.
  44. Wolf JC, Ginn PE, Homer B, et al. Immunohistochemical detection of p53 tumor suppressor gene protein in canine epithelial colorectal tumors. Vet Pathol 1997; 34(5): 394-404.
  45. Yngveson A, Williams C, Hjerpe A, et al. p53 mutations in lung cancer associated with residential radon exposure. Cancer Epidemiol Biomarkers Prev 1999; 8(5): 433-438
  46. Zhang HI, Wang WI, Cui Dx. Detection of gene mutation in sputum of lung cancer patient. Chin J Cancer Res 1999;11(1):77. doi: 1007/s11670-999-0114-8.
  47. Vähäkangas KH, Bennett WP, Castrén K, et al. p53 and K-ras mutations in lung cancers from former and never-smoking women. Canc Res 2001; 61(11): 4350-4356.
  48. Mori S, Ito G, Usami N, et al. p53 apoptotic pathway molecules are frequently and simultaneously altered in nonsmall cell lung carcinoma. Cancer 2004; 100(8): 1673-1682.
  49. Keohavong P, Gao WM, Zheng KC, et al. Detection of K-ras and p53 mutations in sputum samples of lung cancer patients using laser capture microdissection microscope and mutation analysis. Anal Biochem 2004; 324(1): 92-99.
  50. Andjelkovic T, Bankovic J, Stojsic J, et al. Coalterations of p53 and PTEN tumor suppressor genes in non–small cell lung carcinoma patients. Transl Res 2011; 157(1): 19-28.