Document Type : Original Article

Authors

1 Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran

3 Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran

4 Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.

Abstract

Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) can cause vast infections in humans and poultry. The present study was conducted to compare the isolates of the APEC and UPEC pathotypes on the basis phenotypic and genotypic features of antibiotic resistance and phylogenetic differences. Total number of 70 identified E. coli strains, including 35 APEC and 35 UPEC isolates, were isolated from avian colibacillosis and human urinary tract infection (UTI), and were subjected to the antimicrobial susceptibility testing, polymerase chain reaction (PCR) detection of the resistance genes, phylogenetic grouping and DNA fingerprinting with enterobacterial repetitive intergenic consensus PCR (ERIC - PCR) to survey the variability of the isolates. The most resistance rates among all E. coli isolates were, respectively, obtained for Ampicillin (84.20%) and sulfamethoxazole-trimethoprim (65.70%). The APEC and UPEC isolates showed the most susceptibility to imipenem and gentamycin, respectively. Among 70 APEC and UPEC isolates 34.20%, 32.80%, 20.00%, and 12.80% belonged to the A, B2, D, and B1 phylogenetic groups, respectively. Analysis of the DNA fingerprinting phylogenetic tree showed 10 specific clusters of APEC and UPEC isolates. According to the results, the most effective antibiotics and the phenotypic and genotypic predominant resistance patterns of the APEC and UPEC isolates were different. Moreover, APECs and UPECs showed various dominant phylogenetic groups. With all descriptions, the APEC isolates still are potential candidates for carrying important resistance genes and can be one of the possible strains related to human infections.

Keywords

  1. Mortensen S, Johansen AE, Thøfner I, et al. Infectious potential of human derived uropathogenic Escherichia coli UTI89 in the reproductive tract of laying hens. Vet Microbiol 2019; 239: 108445. doi: 10.1016/j.vetmic. 2019.108445.
  2. Jørgensen SL, Stegger M, Kudirkiene E, et al. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. mSphere 2019; 27: 4(1). e00333-18. doi: 10.1128/mSphere.00333-18.
  3. Cunha MPV, Saidenberg AB, Moreno AM, et al. Pandemic extra-intestinal pathogenic Escherichia coli (ExPEC) clonal group O6-B2-ST73 as a cause of avian colibacillosis in Brazil. PLoS One 2017; 12(6): e0178970. doi: 10.1371/journal.pone.0178970.
  4. Miles TD, McLaughlin W, Brown PD. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res 2006; 2: 7. doi: 10.1186/1746-6148-2-7.
  5. Kim YB, Yoon MY, Ha JS, et al. Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poult Sci 2020; 99(2): 1088-1095.
  6. Thomrongsuwannakij T, Blackall PJ, Djordjevic SP, et al. A comparison of virulence genes, antimicrobial resistance profiles and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia. Avian Pathol 2020; 49(5): 457-466.
  7. Rodriguez-Siek KE, Giddings CW, Doetkott C, et al. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiol (Reading) 2005; 151(Pt 6): 2097-2110.
  8. Bakhshi M, Zandi H, Fatahi-Bafghi M, et al. A survey for phylogenetic relationship; presence of virulence genes and antibiotic resistance patterns of avian pathogenic and uropathogenic Escherichia coli isolated from poultry and humans in Yazd, Iran. Gene Rep 2020; 20(3): 100725. doi: 10.1016/j.genrep.2020.100725.
  9. Meena PR, Yadav P, Hemlata H, et al. Poultry‐origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. J Appl Microbiol 2021; 130(6): 2087-2101.
  10. Gillings MR, Gaze WH, Pruden A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 2015; 9(6): 1269-1279.
  11. Thanh Duy P, Thi Nguyen TN, Vu Thuy D, et al. Commensal Escherichia coli are a reservoir for the transfer of XDR plasmids into epidemic fluoro-quinolone-resistant Shigella sonnei. Nat Microbiol 2020; 5(2): 256-264.
  12. Quinn PJ, Markey BK, Leonard FC, et al. Veterinary microbiology and microbial disease. 2ndWest Sussex, USA: John Wiley & Sons 2011: 263-272.
  13. Forbes BA, Sahm DF, Weissfeld AS, et al. Diagnostic microbiology. 12th St. Louis, USA: Mosby 2007; 324-328.
  14. Wikler MA. Performance standards for antimicrobial susceptibility testing: 30th Information Supplement. Wayne, USA: Clinical and Laboratory Standards Institute 2017; M100-S26. Available at: https://clsi.org/media/ 3481/m100ed30_sample.pdf. Accessed Sep 28, 2022.
  15. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66(10): 4555-4558.
  16. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991; 19(24): 6823-6831.
  17. Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: a review. Front Vet Sci 2017; 4: 126. doi: 10.3389/fvets.2017.00126.
  18. Talebiyan R, Kheradmand M, Khamesipour F, et al. Multiple antimicrobial resistance of Escherichia coli isolated from chickens in Iran. Vet Med Int 2014; 2014: 491418. doi: 10.1155/2014/491418.
  19. Shirley M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs 2018; 78(6): 675-692.
  20. Ghazvini H, Taheri K, Edalati E, et al. Virulence factors and antimicrobial resistance in uropathogenic Escherichia coli strains isolated from cystitis and pyelonephritis. Turk J Med Sci 2019; 49(1): 361-367.
  21. Tajbakhsh E, Ahmadi P, Abedpour-Dehkordi E, et al. Biofilm formation, antimicrobial susceptibility, sero-groups and virulence genes of uropathogenic coli isolated from clinical samples in Iran. Antimicrob Resist Infect Control 2016; 5: 11. doi: 10.1186/s13756-016-0109-4.
  22. Torres NF, Chibi B, Middleton LE, et al. Evidence of factors influencing self-medication with antibiotics in low and middle-income countries: a systematic scoping review. Public Health 2019; 168: 92-101.
  23. Dugassa J, Shukuri N. Review on antibiotic resistance and its mechanism of development. J Health Med Nurs 2017; 1(3): 1-17.
  24. Hojabri Z, Darabi N, Arab M, et al. Clonal diversity, virulence genes content and subclone status of Escherichia coli sequence type 131: comparative analysis of coli ST131 and non-ST131 isolates from Iran. BMC Microbiol 2019; 19(1): 117. doi: 10.1186/s12866-019-1493-8.
  25. Chandran SP, Sarkar S, Diwan V, et al. Detection of virulence genes in ESBL producing, quinolone resistant commensal Escherichia coli from rural Indian children. Infect Dev Ctries 2017; 11(5): 387-392.
  26. Shahbazi S, Asadi Karam MR, Habibi M, et al. Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. J Glob Antimicrob Resist 2018; 14: 118-125.
  27. Durmaz S, Buyukunal Bal EB, Gunaydin M, et al. Detection of β-lactamase genes, ERIC-PCR typing and phylogenetic groups of ESBL producing quinolone resistant clinical Escherichia coli Biomed Res 2015; 26(1): 43-50.
  28. Enany M, Hassan W, Ismail N. Prevalence of antibiotic resistance genes among coli strains isolated from poultry in Suez Canal area. Suez Canal Vet Med J 2018; 23(1): 53-65.
  29. Zenati F, Barguigua A, Nayme K, et al. Characterization of uropathogenic ESBL-producing Escherichia coli isolated from hospitalized patients in western Algeria. J Infect Dev Ctires 2019; 13(4): 291-302.
  30. De Souza GM, Neto ERDS, da Silva AM, et al. Comparative study of genetic diversity, virulence genotype, biofilm formation and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from nosocomial and community acquired urinary tract infections. Infect Drug Resist 2019; 12: 3595-3606.
  31. Ghanbarpour R, Salehi M, Oswald E. Virulence genotyping of Escherichia coli isolates from avian cellulitis in relation to phylogeny. Comp Clin Path 2009; 19(2): 147-153.
  32. Pourakbari B, Mamishi S, Shokrollahi MR, et al. Molecular characteristics and antibiotic resistance profiles of Escherichia coli strains isolated from urinary tract infections in children admitted to children's referral hospital of Qom, Iran. Ann Ig 2019; 31(3): 252-262.
  33. Van TT, Chin J, Chapman T, et al. Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int J Food Microbiol 2008; 124(3): 217-223.
  34. Saladin M, Cao VT, Lambert T, et al. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbial Lett 2002; 209(2): 161-168.
  35. Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother 2006; 57(1): 14-23.
  36. Naas T, Mikami Y, Imai T, et al. Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol 2001; 183(1): 235-249.
  37. Faldynova M, Pravcova M, Sisak F, et al. Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother 2003; 47(6): 2002-2005.
  38. Levings RS, Partridge SR, Lightfoot D, et al. New integron-associated gene cassette encoding a 3-N-aminoglycoside acetyltransferase. Antimicrob Agents Chemother 2005; 49(3): 1238-1241.
  39. Sengeløv G, Agersø Y, Halling-Sørensen B, et al. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 2003; 28(7): 587-595.
  40. Maynard C, Fairbrother JM, Bekal S, et al. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrob Agents Chemother 2003; 47(10): 3214-3221.
  41. Toro CS, Farfán M, Contreras I, et al. Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol Infect 2005; 133(1): 81-86.
  42. Shams E, Firoozeh F, Moniri R, et al. Prevalence of plasmid-mediated quinolone resistance genes among extended-spectrum β-Lactamase-producing Klebsiella pneumoniae human isolates in Iran. J Pathog 2015; 2015: 434391. doi: 10.1155/2015/434391.