Document Type : Original Article

Authors

1 Department of Pathology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye

2 Department of Virology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye

3 Department of Surgery, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye

4 Department of Virology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Türkiye

Abstract

This study was aimed at the evaluation of cell proliferation, p53 level and apoptotic index by immunohistochemical methods in canine oral papillomatosis. The study material comprised of tumor tissue samples taken from six dogs being admitted to the Pathology Department of Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye. Choice of immunohistochemical staining was avidin-biotin peroxidase method. Cases of canine oral papillomatosis, determined to have been caused by canine papillomavirus-1, were found to have a rather high cell proliferation index. Furthermore, all cases were immunohisto-chemically demonstrated to carry a mutant p53 gene. Despite the mutation of p53 gene, the shift in the Bax/Bcl-2 ratio of dogs diagnosed with tumor was in favor of the pro-apoptotic Bax gene. The apoptotic mechanism was determined to occur through both the caspase-dependent and caspase-independent pathways. While the lesions occupied the entire oral cavity in some cases, histopathologically, malignant transformation was not detected in any of the six cases.

Keywords

Main Subjects

  1. Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Pathological similarities in the development of
    papillomavirus-associated cancer in humans, dogs, and cats. Animals (Basel) 2022; 12(18): 2390. doi: 10.3390/ani12182390.
  2. Regalado Ibarra AM, Legendre L, Munday JS. Malignant transformation of a canine papillomavirus type 1-induced persistent oral papilloma in a 3-year-old dog. J Vet Dent 2018; 35(2): 79-95.
  3. Chang CY, Chen WT, Haga T, et al. The detection and association of canine papillomavirus with benign and malignant skin lesions in dogs. Viruses 2020; 12(2): 170. doi: 10.3390/v12020170.
  4. Porcellato I, Brachelente C, Guelfi G, et al. A retrospective investigation on canine papillomavirus 1 (CPV1) in oral oncogenesis reveals dogs are not a suitable animal model for high-risk HPV-induced oral cancer. PLoS One 2014; 9(11): e112833. doi: 10.1371/journal.pone.0112833.
  5. Boehm TMSA, Bettenay S, von Bomhard W, et al. A case series of canine cutaneous inverted papilloma with one case showing evidence of recurrence. Vet Dermatol 2021; 32(3): e268-e274. doi: 10.1111/ vde.12961.
  6. Lange CE, Favrot C. Canine papillomaviruses. Vet Clin North Am Small Anim Pract 2011; 41(6): 1183-1195.
  7. Lange CE, Jennings SH, Diallo A, et al. Canine papillomavirus types 1 and 2 in classical papillomas: High abundance, different morphological associations and frequent co-infections. Vet J 2019; 250: 1-5.
  8. Munday JS, Thomson NA, Luff JA. Papillomaviruses in dogs and cats. Vet J 2017; 225: 23-31.
  9. Williams A, Scally G, Langland J. A topical botanical therapy for the treatment of canine papilloma virus associated oral warts: A case series. Adv Integr Med 2021; 8(2): 151-154.
  10. Yhee JY, Kwon BJ, Kim JH, et al. Characterization of canine oral papillomavirus by histopathological and genetic analysis in Korea. J Vet Sci 2010; 11(1): 21-25.
  11. Oğuzoğlu TÇ, Timurkan MÖ, Koç BT, et al. Comparison of genetic characteristics of canine papillomaviruses in Turkey. Infect Genet Evol 2017; 55: 372-376.
  12. Raj PAA, Pavulraj S, Kumar MA, et al. Therapeutic evaluation of homeopathic treatment for canine oral papillomatosis. Vet World 2020; 13(1): 206-213.
  13. Pikor LA, Enfield KS, Cameron H, et al. DNA extraction from paraffin embedded material for genetic and epigenetic analyses. J Vis Exp 2011; 49: 2763. doi: 10.3791/2763.
  14. Teifke JP, Löhr CV, Shirasawa H. Detection of canine oral papillomavirus-DNA in canine oral squamous cell carcinomas and p53 overexpressing skin papillomas of the dog using the polymerase chain reaction and non-radioactive in situ hybridization. Vet Microbiol 1998; 60(2-4): 119-130.
  15. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95-98.
  16. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389-3402.
  17. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28(10): 2731-2739.
  18. Beytut E. Pathological and immunohistochemical evaluation of skin and teat papillomas in cattle. Turkish J Vet Anim Sci 2017; 41(2): 204-212.
  19. Öztürk Gürgen H, Egeden E, Şennazlı G. Clinicopathologic evaluation of oral squamous cell carcinoma in a young dog. Ankara Univ Vet Fak Derg 2021; 68(1): 77-81.
  20. Mestrinho LA, Faísca P, Peleteiro MC, et al. PCNA and grade in 13 canine oral squamous cell carcinomas: association with prognosis. Vet Comp Oncol 2017; 15(1): 18-24.
  21. Paramjeet, Jangir BL, Saharan S, et al. Patho-morphological and immunohistochemical evaluations of pancytokeratin, vimentin and proliferating cell nuclear antigen in epithelial tumours of dogs. Indian J Vet Pathol 2021; 45(2): 128-135.
  22. Martano M, Restucci B, Ceccarelli DM, et al. Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas. Oncol Lett 2016; 11(1): 399-404.
  23. Subapriya S, Pazhanivel N, Shafiuzama M, et al. Immunohistochemical diagnosis of skin tumours in dogs. Pharma Innov J 2021; 10(5): 612-619.
  24. Jun D, Yi G, Na T, et al. Canine oral papillomavirus infection: clinical course, pathology, L1 gene and NCR2 gene sequencing. Isr J Vet Med 2010; 65: 111-116.
  25. Bocaneti F, Altamura G, Corteggio A, et al. Expression of bcl-2 and p53 in bovine cutaneous fibropapillomas. Infect Agent Cancer 2015; 10(1): 2. doi: 10.1186/1750-9378-10-2.
  26. Quinlan S, May S, Weeks R, et al. Canine papillomavirus 2 E6 does not interfere with UVB-induced upregulation of p53 and p53-regulated genes. Front Vet Sci 2021; 8: 570982. doi: 10.3389/fvets.2021.570982.
  27. Al-Salihi KA, Al-Dabhawi AH, Ajeel AA, et al. Clinico-histopathological and immunohistochemical study of ruminant's cutaneous papillomavirus in Iraq. Vet Med Int 2020; 2020: 5691974. doi: 10.1155/2020/5691974.
  28. Hassanien RT, Hamdy ME, Elnomrosy SM, et al. Molecular characterization and pathological identification of a novel strain of delta papillomavirus-4 (bovine papillomavirus-2) in Egypt. Vet World 2021; 14(9): 2296-2305.
  29. Thaiwong T, Sledge DG, Wise AG, et al. Malignant transformation of canine oral papillomavirus (CPV1)-associated papillomas in dogs: An emerging concern? Papillomavirus Res 2018; 6: 83-89.
  30. Mayr B, Schellander K, Schleger W, et al. Sequence of an exon of the canine p53 gene--mutation in a papilloma. Br Vet J 1994; 150(1): 81-84.
  31. Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 2019; 39(1): BSR20180992. doi: 10.1042/ BSR20180992.
  32. Pieper JB, Stern AW, LeClerc SM, et al. Coordinate expression of cytokeratins 7 and 14, vimentin, and Bcl-2 in canine cutaneous epithelial tumors and cysts. J Vet Diagn Invest 2015; 27(4): 497-503.
  33. Madej JA, Madej JP, Dzimira S, et al. An immunohistochemical analysis of lymphocytic infiltrations in canine skin cancers. Pol J Vet Sci 2017; 20(1): 141-147.
  34. Dos Anjos DS, Bueno C, Magalhães LF, et al. Electrochemotherapy induces tumor regression and decreases the proliferative index in canine cutaneous squamous cell carcinoma. Sci Rep 2019; 9(1): 15819. doi: 10.1038/s41598-019-52461-6.
  35. Cai Q, Lv L, Shao Q, et al. Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet 2013; 287(3): 541-548.
  36. Bongiovanni L, Romanucci M, Fant P, et al. Apoptosis and anti-apoptotic heat shock proteins in canine cutaneous infundibular keratinizing acanthomas and squamous cell carcinomas. Vet Dermatol 2008; 19(5): 271-279.
  37. D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43(6): 582-592.
  38. Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016; 8(4): 603-619.
  39. Goldar S, Khaniani MS, Derakhshan SM, et al. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 2015; 16(6): 2129-2144.
  40. Shimada M, Yamashita A, Saito M, et al. The human papillomavirus E6 protein targets apoptosis-inducing factor (AIF) for degradation. Sci Rep 2020; 10(1): 14195. doi: 10.1038/s41598-020-71134-3.
  41. Gil da Costa RM, Peleteiro MC, Pires MA, et al. An update on canine, feline and bovine papillomaviruses. Transbound Emerg Dis 2017; 64(5): 1371-1379.