Anti-quorum sensing effects of Licochalcone A and Epigallocatechin-3-gallate against Salmonella Typhimurium from poultry sources

Document Type: Original Article

Authors

1 Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Abstract

Quorum sensing (QS) is a cell density-dependent mechanism used by many pathogenic bacteria for regulating virulence gene expression. Inhibition or interruption of QS by medicinal plant remedies has been suggested as a new strategy for fighting against antibiotic-resistant bacteria. This study aimed to assess the impact of sub-inhibitory concentrations of licochalcone A (LAA) and epigallocatechin-3-gallate (EGCG) as natural plant products on the QS-associated genes(sdiA and luxS)expression. The PCR test was used to confirm the presence of sdiA and luxS genes in 23 S. Typhimurium isolates from poultry. The quantitative real-time PCR assay was used to analyze the expression of sdiA and luxS in S. Typhimurium isolates in response to the treatment with sub-inhibitory concentrations of LAA and EGCG at 45-min time point. All S. Typhimurium isolates showed the presence of sdiA and luxS genes (100%). As result, the expression of QS-related genes was significantly reduced in S. Typhimurium isolates following treatment with LAA and EGCG. In conclusion, LAA and EGCG showed anti-QS activity with down-regulation of both sdiA and luxS genes in S. Typhimurium, suggesting potential therapeutic use of them against salmonellosis. However, it must be pointed out that the safety and efficiency of these compounds need more thorough research.

Keywords


 
  1. Fábrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26(2): 308-341.
  2. Eng SK, Pusparajah P, Ab Mutalib NS, et al. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015; 8(3): 284-293.
  3. Heredia N, García S. Animals as sources of food-borne pathogens: A review. Anim Nutr 2018; 4(3): 250-255.
  4. Crum-Cianflone NF. Salmonellosis and the gastro-intestinal tract: more than just peanut butter. Curr Gastroenterol Rep 2008; 10(4): 424-431.
  5. Steenackers H, Hermans K, Vanderleyden J, et al. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012; 45: 502-531.
  6. Bouyahya A, Dakka N, Et-Touys A, et al. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 2017; 10(8): 729-743.
  7. Habyarimana F, Sabag-Daigle A, Ahmer BMM. The SdiA-regulated gene srgE encodes a type III secreted effector. J Bacteriol 2014; 196(12): 2301-2312.
  8. Gart EV, Suchodolski JS, Welsh TH Jr, et al. Salmonella Typhimurium and multidirectional communication in the gut. Front Microbiol 2016; 7: 1827. doi: 10.3389/fmicb.2016.0182.
  9. Hossain MA, Park JY, Kim JY, et al. synergistic effect and antiquorum sensing activity of Nymphaea tetragona (Water Lily) extract. BioMed Res Int 2014; doi:10.1155/2014/562173.
  10. Nair DVT, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 2018; 7(10): 167. doi: 10.3390/foods7100167.
  11. Saurav K, Bar-Shalom R, Haber M, et al. In search of alternative antibiotic drugs: Quorum-Quenching activity in sponges and their bacterial isolates. Front Microbiol 2016; 7: 416. doi:10.3389/fmicb.2016.00416.
  12. Asfour HZ. Anti-Quorum sensing natural compounds. J Microsc Ultrastruct 2018; 6(1): 1-10.
  13. Wang L, Yang R, Yuan B, et al. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B. 2015; 5(4): 310-315.
  14. Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol 2014; 5: 434. doi: 10.3389/fmicb. 2014.00434.
  15. Fazl AA, Zahraei Salehi T, Jamshidian M, et al. Molecular detection of invA, ssaP, sseC and pipB genes in S. Typhimurium isolated from human and poultry in Iran. Afr J Microbiol Res 2013; 7(13): 1104-1108.
  16. Hosseinzadeh S, Saei HD, Ahmadi M, et al. Anti-microbial effect of licochalcone A and epigallocatechin-3-gallate against Salmonella Typhimurium isolated from poultry flocks. Iran J Microbiol 2018; 10(1): 51-58.
  17. Wang D, Yu L, Xiang H, et al. Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol Lett 2008; 279(2): 217-225.
  18. Ahmer BMM. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 2004; 52(4): 933-945.
  19. Sabag-Daigle A, Dyszel JL, Gonzalez JF, et al. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol 2015; 5: 47. doi: 10.3389/fcimb. 2015.00047.
  20. Rutherford ST, Bassler BL. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2(11): a012427. doi: 10.1101/cshperspect. a012427.
  21. Halatsi K, Oikonomou I, Lambiri M, et al. PCR detection of Salmonella spp. using primers targeting the quorum sensing gene sdiA. FEMS Microbiol Lett 2006; 259(2): 201-207.
  22. Campos-Galvão MEM, Leite TD, Ribon AO, et al. A new repertoire of informations about the quorum sensing system in Salmonella enterica serovar Enteritidis PT4. Genet Mol Res 2015; 14: 4068-4084.
  23. Prouty AM, Schwesinger WH, Gunn JS. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 2002; 70(5): 2640-2649.
  24. Choi J, Shin D, Kim M, et al. LsrR-mediated quorum sensing controls invasiveness of Salmonella Typhimurium by regulating SPI-1 and flagella genes. PLoS ONE 2012; 7(5): e37059. doi:10.1371/ journal. pone.0037059.
  25. Soares JA, Ahmer BMM. Detection of acyl-homoserine lactones by Escherichia and Salmonella. Curr Opin Microbiol 2011; 14(2): 188-193.
  26. Boyen F, Eeckhaut V, Van Immerseel F, et al. Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 2009; 135(3-4): 187-195.
  27. Koh C-, Sam CK, Yin WF, et al. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors (Basel) 2013; 13(5): 6217-6228.
  28. Wallar LE, Bysice AM, Coombes BK. The non-motile phenotype of Salmonella hha ydgT mutants is mediated through PefI-SrgD. BMC Microbiol 2011; 11: 141. doi:10.1186/1471-2180-11-141.
  29. Bravo D, Silva C, Carter JA, et al. Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol 2008; 57(Pt 8): 938-946.
  30. Firouzi R, Derakhshandeh A, Khoshbakht R. Distribution of sdiA quorum sensing gene and its two regulon among Salmonella serotypes isolated from different origins. Comp Clin Path 2014; 23: 1435-1439.
  31. Teplitski M, Al-Agely A, Ahmer BMM. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiol 2006; 152(11): 3411-3423.
  32. Choi J, Shin D, Ryu S. Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity Island 1. Infect Immun 2007; 75(10): 4885-4890.
  33. Jesudhasan PR, Cepeda ML, Widmer K, et al. Trans-criptome analysis of genes controlled by luxS/auto-inducer-2 in Salmonella enterica serovar Typhimurium. Foodborne Pathog Dis 2010; 7(4): 399-410.
  34. Shen F, Tang X, Wang Y, et al. Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone A. Appl Microbiol Biotechnol 2015; 99: 359-373.
  35. Qiu J, Feng H, Xiang H, et al. Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus. FEMS Microbiol Lett 2010; 307(2): 135-141.
  36. Zhu J, Huang X, Zhang F, et al. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. J Microbiol 2015; 53(12): 829-836.
  37. Castillo S, Heredia N, García S. 2(5H)-Furanone, epigallocatechin gallate, and a citric-based disinfectant disturb quorum-sensing activity and reduce motility and biofilm formation of Campylobacter jejuni. Folia Microbiol 2015; 60: 89-95.
  38. Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol 2016; 65: 35-43.
  39. Lee P, Tan KS. Effects of epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch Oral Biol 2015; 60(3): 393-399.
  40. Lee KM, Kim WS, Lim J, et al. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against entero-hemorrhagic Escherichia coli O157:H7. J Food Prot 2009; 72(2): 325-331.