Document Type : Original Article


1 Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran

2 Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran


Toxoplasmosis, a foodborn disease, in human occurs commenly after the ingestion of tissue cysts via the raw and/or undercooked meat of different infected intermediate hosts such as sheep and cattle.The current study aimed to detect the genetic structure of Toxoplasma gondii isolated from various organs of sheep and cattle in the north of Iran. Convetional PCR was carried out by B1 and REP-529 genes of T. gondii. Nested and RFLP-PCR were performed for all positive samples using SAG2 and GRA6 genetic markers. Amplicons from second round of nested-PCR were sequenced and analyzed with NCBI database. Among of 179 examined samples, 38(21.20%) were positive. The highest of positive cases were found in kidney (28.60%). PCR-RFLP of SAG2 and GRA6 genes demonstrated the alleles of clonal type III in the all of isolates. Sequence analysis of the amplicons revealed the alleles of clonal type III and atypical isolates (Tg-67, Tg-100 and Tg-106). Phylogenetic analyses showed separate clade for the atypical isolates from others in the present study and the reference strains clades. In conclusion, the genetic characterization of T. gondii isolates from sheep and cattle showed high genetic diversity compared with standard type I, II and III genotypes. These results support the hypothesis of the existence of polymorphic and overlapping strains within livestock in Iran. It also suggested the necessity of increased genotyping and sampling efforts to accurately estimate T. gondii intra specific genetic diversity


  1. Ybañez RHD, Busmeon CGR, Viernes ARG, et al. Endemicity of Toxoplasma infection and its associated risk factors in Cebu, Philippines. PloS One 2019; 14(6):e0217989. doi: 10.1371/journal.pone.0217989.
  2. Shapiro K, Bahia-Oliveira L, Dixon B, et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. doi: 10.1016/j.fawpar. 2019.e00049.
  3. Limon G, Beauvais W, Dadios N, et al. Cross-sectional study of Toxoplasma gondii infection in pig farms in England. Foodborne Pathog Dis 2017; 14(5): 269-281.
  4. Opsteegh M, Dam-Deisz C, de Boer P, et al. Methods to assess the effect of meat processing on viability of Toxoplasma gondii: towards replacement of mouse bioassay by in vitro testing. Int J Parasitol 2020; 50(5): 357-369.
  5. Dubey JP, Hill DE, Fournet V, et al. Low prevalence of viable Toxoplasma gondii in fresh, unfrozen, American pasture-raised pork and lamb from retail meat stores in the United States. Food Control 2020; 109: 106961. doi: 10.1016/j.foodcont.2019.106961.
  6. Flegr J, Prandota J, Sovičková M, et al. Toxoplasmosis–a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PloS One 2014; 9(3): e90203. doi: 10.1371/journal. pone.0090203.
  7. Alavi SM, Alavi L. Toxoplasmosis in Iran: A guide for general physicians working in the Iranian health network setting: A systematic review. Caspian J Intern Med 2016; 7(4): 233-241.
  8. Kalantari N, Sheikhansari MR, Ghaffari S, et al. Seroprevalence and molecular detection of Toxoplasma gondii in young healthy blood donors in Northern Iran. Trop Biomed 2018; 35(4): 1017-1027.
  9. Stelzer S, Basso W, Silván JB, et al. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol 2019; 15: e00037. doi:10.1016/j.fawpar. 2019.e00037.
  10. Sharif M, Sarvi Sh, Shokri A, et al. Toxoplasma gondii infection among sheep and goats in Iran: a systematic review and meta-analysis. Parasitol Res 2015; 14(1): 1-16.
  11. Sarvi S, Daryani A, Rahimi MT, et al. Cattle toxoplasmosis in Iran: a systematic review and meta–analysis. Asian Pac J Trop Med 2015; 8(2): 120-126.
  12. Ajzenberg D, Collinet F, Mercier A, et al. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay. J Clin Microbiol 2010; 48(12): 4641-4645.
  13. Ajzenberg D, Bañuls AL, Tibayrenc M, et al. Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups. Int J Parasitol 2002; 32(1): 27-38.
  14. Galal L, Hamidović A, Dardé ML, et al. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol 2019; 15: e00052. doi:10.1016/j.fawpar.2019.e00052.
  15. Sharif M, Amouei A, Sarvi S, et al. Genetic diversity of Toxoplasma gondii isolates from ruminants: A systematic review. Int J Food Microbiol 2017; 258(3): 38-49.
  16. Su C, Shwab EK, Zhou P, et al. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 2010; 137(1): 1-11.
  17. Abdoli A, Dalimi A, Soltanghoraee H, et al. Molecular detection and genotypic characterization of Toxoplasma gondii in paraffin-embedded fetoplacental tissues of women with recurrent spontaneous abortion. Int J Fertil Steril 2017; 10(4): 327-336.
  18. Dalir Ghaffari A, Dalimi A. Molecular identification of Toxoplasma gondii in the native slaughtered cattle of Tehran province, Iran. J Food Qual Hazards Control 2019; 6(4):153-161.
  19. Zia-Ali N, Fazaeli A, Khoramizadeh M, et al. Isolation and molecular characterization of Toxoplasma gondii strains from different hosts in Iran. Parasitol Res 2007; 101(1): 111-115.
  20. Fallah E, Hajizadeh M, Farajnia S, et al. SAG2 locus genotyping of Toxoplasma gondii in meat products of East Azerbaijan province, northwest of Iran during 2010-2011.Afr J Biotechnol 2011; 10(62): 13631-13635.
  21. Rahumatullah A, Khoo BY, Noordin R. Triplex PCR using new primers for the detection of Toxoplasma gondii. Exp Parasitol 2012; 131(2): 231-238.
  22. Armand B, Solhjoo K, Shabani-Kordshooli M, et al. Toxoplasma infection in sheep from south of Iran monitored by serological and molecular methods; risk assessment to meat consumers. Vet world 2016; 9(8): 850-855.
  23. Amdouni Y, Rjeibi MR, Rouatbi M, et al. Molecular detection of Toxoplasma gondii infection in slaughtered ruminants (sheep, goats and cattle) in Northwest Tunisia. Meat Sci 2017; 133: 180-184.
  24. Rahdar M, Samarbaf Zadeh A, Arab L. Evaluating the prevalence of Toxoplasma gondii in meat and meat products in Ahvaz by PCR method. Jundishapur J Microbiol 2012; 5(4): 570-573.
  25. Satbige AS, Vijaya Bharathi M, Ganesan P, et al. Detection of Toxoplasma gondii in small ruminants in Chennai using PCR and modified direct agglutination test. J Parasit Dis 2016; 40(4): 1466-1469.
  26. Rouatbi M, Amairia S, Lahmer M, et al. Detection of Toxoplasma gondii infection in semen of rams used for natural mating in commercial sheep farms in Tunisia. Vet Parasitol Reg Stud Reports 2019; 18: 100341. doi: 10.1016/j.vprsr.2019.100341.
  27. Sah RP, Dey AR, Rahman AKMA, et al. Molecular detection of Toxoplasma gondii from aborted fetuses of sheep, goats and cattle in Bangladesh. Vet Parasitol Reg Stud Reports 2019; 18: 100347. doi: 10.1016/j.vprsr. 2019.100347.
  28. Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 1998; 11(2): 267-299.
  29. Sroka J, Bilska-Zając E, Wójcik-Fatla A, et al. Detection and molecular characteristics of Toxoplasma gondii DNA in retail raw meat products in Poland. Foodborne Pathog Dis 2019; 16(3): 195-204.
  30. Ghaffari S, Kalantari N. A multi-locus study of Cryptosporidium parasites isolated from patients living in Iran, Malawi, Nigeria, the United Kingdom, and Vietnam. Iranian J Parasitol 2014; 9(1): 79-89.
  31. Kemp BM, Bingham B, Frome R, et al. Subduing the influence of PCR inhibitors on amplifying aged, degraded, and low copy number DNA: PCR enhancer cocktail-p and rescue PCR. PloS One 2020; 15(6): e0234745. doi: 10.1371/journal.pone.0234745.
  32. Tavalla M, Asgarian F, Kazemi F. Prevalence and genetic diversity of Toxoplasma gondii oocysts in cats of southwest of Iran. Infect Dis Health 2017; 22(4): 203-209.
  33. Sroka J, Kusyk P, Bilska-Zajac E, et al. Seroprevalence of Toxoplasma gondii infection in goats from the south-west region of Poland and the detection of gondii DNA in goat milk. Folia Parasitol (Praha) 2017; 64: 2017.023. doi: 10.14411/fp.2017.023.
  34. Wong WK, Upton A, Thomas MG. Neuropsychiatric symptoms are common in immunocompetent adult patients with Toxoplasma gondii acute lymphadenitis. Scand J Infect Dis 2013; 45(5): 357-361.
  35. Chessa G, Chisu V, Porcu R, et al. Molecular characterization of Toxoplasma gondii Type II in sheep abortion in Sardinia, Italy. Parasite 2014; 21: 6. doi: 10.1051/parasite/2014007.
  36. Vismarra A, Barilli E, Miceli M, et al. Toxoplasma gondii and pre-treatment protocols for polymerase chain reaction analysis of milk samples: a field trial in sheep from Southern Italy. Ital J Food Saf 2017; 6(1): 6501. doi: 10.4081/ijfs.2017.6501.
  37. Fazaeli A, Carter PE, Darde ML, et al. Molecular typing of Toxoplasma gondii strains by GRA6 gene sequence analysis. Int J Parasitol 2000; 30(5): 637-642.
  38. Dubey JP, Rajendran C, Ferreira LR, et al. High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for human consumption in the USA. Int J Parasitol 2011; 41(8): 827-833.
  39. Fernández-Escobar M, Calero-Bernal R, Benavides J, et al. Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks. Parasit Vectors 2020; 13(1): 396. doi: 10.1186/s13071-020-04275-z.
  40. Bertranpetit E, Jombart T, Paradis E, et al. Phylogeography of Toxoplasma gondii points to a South American origin. Infect Genet Evol 2017; 48: 150-155.
  41. Nam HW. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean J Parasitol 2009; 47 (Suppl): S29-S37.
  42. Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci 2010; 15(2): 89-97.