Document Type : Original Article


1 Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 DVM Graduate, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran


Previous findings have shown that saffron (Crocus sativus L.) extract and its active constituents produce antinociceptive effects in the rat models of orofacial pain. In the present study, the central H2 histaminergic and alpha-2 adrenergic receptors involvement in crocetin-induced antinociception in orofacial formalin pain in rats was evaluated.The guide cannula was implanted into the fourth ventricle in ketamine-xylazine anesthetized rats. Subcutaneous injection of a diluted formalin solution (1.50%; 50.00 µL) into a vibrissa pad was used as a model of orofacial pain. Face rubbing behavior durations were recorded at 3 min blocks for 45 min.Formalin produced a biphasic pain response (first phase: 0-3 min and second phase: 15-33 min). Intra-fourth ventricle injections of crocetin (5.00 and 10.00 μg μL-1) suppressed, whereas yohimbine (10.00 μg μL-1) and naloxone (10.00 μg μL-1) increased the intensity of both phases of pain. Crocetin-induced antinociception was not prevented by central pretreatment with naloxone. However, the antinociceptive effect of crocetin (5.00 μg μL-1) was inhibited by prior administration of famotidine (10.00 μg μL-1) and yohimbine (10.00 μg μL-1). Our study showed that injection of crocetin into the cerebral fourth ventricle attenuated formalin-induced orofacial pain in rats. Central H2 histaminergic and alpha-2 adrenergic receptors, but not opioid receptors, might be involved in crocetin-induced antinociception.



    1. Moshiri M, Vahabzadeh M, Hosseinzadeh H. Clinical applications of saffron (Crocus sativus) and its constituents: A review. Drug Res (Stuttg) 2015; 65(6): 287-295.
    2. Ahmad AS, Ansari MA, Ahmad M, et al. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 2005; 81(4): 805-813.
    3. Amin B, Nakhsaz A, Hosseinzadeh H. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice. Avicenna J Phytomed 2015; 5(5): 458-468.
    4. Tamaddonfard E, Farshid AA, Ahmadian E, et al. Crocin enhanced functional recovery after sciatic nerve crush injury in rats. Iran J Basic Med Sci 2013; 16(1): 83-90.
    5. Tamaddonfard E, Farshid AA, Asri-Rezaee S, et al. Crocin improved learning and memory impairments in streptozotocin-induced diabetic rats. Iran J Basic Med Sci 2013; 16(1): 91-100.
    6. Nam KN, Park YM, Jung HJ, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 2010; 648(1-3): 110-116.
    7. Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 2009; 23(6): 768-774.
    8. Tamaddonfard E, Tamaddonfard S, Pourbaba S. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats. Avicenna J Phytomed 2015; 5(5): 450-457.
    9. Karami M, Bathaie SZ, Tiraihi T, et al. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). Phytomedicine 2013; 21(1): 62-67.
    10. Amin B, Hosseinzadeh H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L, and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 2012; 83(5): 888-895.
    11. Erfanparast A, Tamaddonfard E, Taati M, et al. Effects of crocin and safranal, saffron constituents, on the formalin-induced orofacial pain in rats. Avicenna J Phytomed 2015; 5(5): 392-402.
    12. Tamaddonfard E, Hamzeh-Gooshchi N. Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytother Res 2010; 24(3):410-413.
    13. Tamaddonfard E, Hamzeh-Gooshchi N. Effect of intraperitoneal and ‎intracerebroventricular injection of crocin on acute corneal pain in rats. Phytother Res ‎‎2010; 24(10): 1463-1467.‎
    14. Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev ‎Neurobiol 2011; 97: 179-206.‎
    15. Clavelou P, Pajot J, Dallel R, et al. Application of the formalin test to the study of ‎orofacial pain in the rat. Neurosci Lett 1989; 103(3): 349-353. ‎
    16. Erfanparast A, Tamaddonfard E, Taati M, et al. Role of the thalamic submedius nucleus ‎histamine H1 and H2 and opioid receptors in modulation of formalin-induced orofacial ‎pain in rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(10): 1089-1096.‎
    17. Miranda HF, Sierralta F, Lux S, et al. Involvement of nitridergic and opioidergic ‎pathways in the antinociception of gabapentin in the orofacial formalin test in mice. ‎Pharmacol Rep 2015; 67(2): 399-403.‎
    18. Donatti AF, Araujo RM, Soriano RN, et al. Role of hydrogen sulfide in the formalin-‎induced orofacial pain in rats. Eur J Pharmacol 2014; 738:49-56. ‎
    19. de Carvalho EF, de Oliveira SK, Nardi VK, et al. Ilex paraguariensis promotes orofacial ‎pain relief after formalin injection: Involvement of noradrenergic pathway. ‎Pharmacognnosy Res 2016; 8 (Suppl 1): S31-S37.‎
    20. Tamaddonfard E, Rahimi S. Central effect of histamine and peripheral effect of histidine ‎on the formalin-induced pain response in mice. Clin Exp Pharmacol Physiol 2004; 31(8): ‎‎518-522. ‎
    21. Mojtahedin A, Tamaddonfard E, Zanboori A. Antinociception induced by central ‎administration of histamine in the formalin test in rats. Indian J Physiol Pharmacol 2008; ‎‎52(3):249-254.‎
    22. Pertovaara A. The noradrenergic pain regulation system: a potential target for pain ‎therapy. Eur J Pharmacol 2013; 716(1-3): 2-7.‎
    23. Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system: modulation of ‎behavioral state and state-dependent cognitive processes. Brain Res Rev 2003; 42(1): 33-‎‎84.‎
    24. Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. ‎Neurosurg Clin N Am, 2014; 25(4): 629-638.‎
    25. Richardson J, Cruz MT, Majumdar U, et al. Melanocortin signaling in the brainstem ‎influences vagal outflow to the stomach. J Neurosci 2013; 33(33): 13286-13299.‎
    26. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 3rd ed. San Diego, USA: ‎Academic Press 1997; Figures 67 and 68.‎
    27. Taherianfard M, Khazaee Z. Effect of xylazine and yohimbine on the phasic pain during the ‎estrous cycle in the rat. Iran J Vet Res 2006; 7(4): 33-39.‎
    28. Raboisson P, Dallel R. The orofacial formalin test. Neurosci Biobehav Rev 2004; 28(2): 219-‎‎226. ‎
    29. Anderson LC, Vakoula A, Veinote R. Inflammatory hypersensitivity in a rat model of ‎trigeminal neuropathic pain. Arch Oral Biol 2003; 48(2): 161-169.‎
    30. Tamaddonfard E, Farshid AA, Eghdami K, et al. Comparison of the effects of crocin, ‎safranal and diclofenac on local inflammation and inflammatory pain responses induced ‎by carrageenan in rats. Pharmacol Rep 2013; 65(5): 1272-1280.‎
    31. Asai A, Nakano T, Takahashi M, et al. Orally administered crocetin and crocins are absorbed ‎into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem ‎‎2005; 53(18): 7302-7306. ‎
    32. Wang X, Zhang G, Qiao Y, et al. Crocetin attenuates spared nerve injury-induced ‎neuropathic pain in mice. J Pharmacol Sci, 2017; 135(4), 141-147.‎
    33. Romero TRL, de Castro Perez A, de Francischi JN, et al. Probable involvement of alpha(2C)-‎adrenoceptor subtype and endogenous opioid peptides in the peripheral antinociceptive ‎effect induced by xylazine. Eur J Pharmacol 2009; 608(1-3): 23-27.‎
    34. Kanui TI, Tjolsen A, Lund A, et al. Antinociceptive effects of intrathecal administration of ‎alpha-adreno-ceptor antagonists and clonidine in the formalin test in the mouse. ‎Neuropharmacology 1993; 32(4): 367-371.‎
    35. Tamaddonfard E, Erfanparast A, Farshid AA, et al. Interaction between histamine and ‎morphine at the level of the hippocampus in the formalin-induced orofacial pain in rats. ‎Pharmacol Rep 2011; 63(2):
    36. Parvizpur A, Ahmadiani A, Kamalinejad M. Spinal serotonergic system is partially involved ‎in antinociception induced by Trigonella foenum-graecum (TFG) leaf extract. J ‎Ethnopharmacol 2004; 95(1): 13-17.‎
    37. Sawada LA, Monteiro VS, Rabelo GR, et al. Libidibia ferrea mature seeds promote ‎antinociceptive effect by peripheral and central pathway: Possible involvement of opioid ‎and cholinergic receptors. Biomed Res Int 2014; 508725. doi: 10.1155/2014/508725.‎
    38. Zhao X, Xu Y, Zhao Q, et al. Curcumin exerts antinociceptive effects in a mouse model of ‎neuro-pathic pain: Descending monoamine system and opioid receptors are differentially ‎involved. Neuro-pharmacology 2012; 62(2): 843-854. ‎