Document Type : Original Article

Authors

1 Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt

2 Unit of Bacteriology, Animal Health Research Institute, Kafr El-Sheikh Branch, Agriculture Research Center (ARC), Egypt

Abstract

Pathogenic Escherichia coli is one of the world’s most important zoonotic foodborne pathogens and poses a serious threat to public health. We examined the prevalence, virulence genes, and antibiotic resistance profile of Shiga toxin (Stx)-producing E. coli (STEC) isolated from broiler chickens in the Kafr El-Sheikh governorate, Egypt. A total of 410 samples (230 cloacal swabs, 180 internal organs) were collected to isolate E. coli. A total of 29 (7.07%) E. coli isolates were recovered and identified, and 18 of them harbored Stx genes (stx). Out of 18 isolates, five (17.24%) carried the stx1 gene, five (17.24%) carried the stx2 gene, four (13.79%) carried both stx1 and stx2 genes, and four (13.79%) carried stx1, stx2, and eaeA genes. Overall, complete antibiotic resistance was observed against amoxicillin, ampicillin, cefpodoxime, and cefoperazone; high resistance was observed against ampicillin/sulbactam, nalidixic acid, cefuroxime, aztreonam, ciprofloxacin, ceftriaxone, chloramphenicol, sulfamethoxazole/ trimethoprim, and ceftazidime; moderate resistance against gentamicin; low resistance against cefoxitin; lower resistance was detected against norfloxacin, cefotetan, and amikacin; and the lowest resistance against imipenem. All E. coli isolates demonstrated multidrug resistance against at least four antibiotic classes. Out of 29 E. coli isolates, STEC accounted for 18 isolates, of which the O78, O26:H11, O128:H2, O1:H7, O119:H6, and O91:H21 serogroups were predominant. All E. coli isolates were multidrug resistant and therefore pose a potential public health concern as these virulent, resistant strains may spread to humans. Thus, high levels of hygiene and biosecurity are required by chicken handlers to decrease the danger of infection spreading to humans.

Keywords

  1. Wibisono FJ, Sumiarto B, Kusumastuti TA. Economic losses estimation of pathogenic Escherichia coli infection in Indonesian poultry farming. Bul Peternak 2018; 42(4): 341-346.
  2. Gross WG. Diseases due to Escherichia coli in poultry. In: Gyles CL (Ed). Escherichia coli in domestic animals and humans. Wallingford, UK: CAB International 1994; 237-259.
  3. Suardana IW, Utama IH, Putriningsih PAS, et al. Sensitivity test against various antibiotics of Escherichia coli O157:H7 originated from chicken fecals [Indonesian]. Bul Vet Udayana 2014; 6(1): 19-27.
  4. Effendi MH, Tyasningsih W, Yurianti YA, et al. Presence of multidrug resistance (MDR) and extended-spectrum beta-lactamase (ESBL) of Escherichia coli isolated from cloacal swab of broilers in several wet markets in Surabaya, Indonesia. Biodiversitas 2021; 22(1): 304-310.
  5. Clements A, Young JC, Constantinou N, et al. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 2012; 3(2): 71-87.
  6. Gomes TA, Elias WP, Scaletsky IC, et al. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1(Suppl 1): 3-30.
  7. Farrokh C, Jordan K, Auvray F, et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol 2013; 162(2): 190-212.
  8. Lee MS, Tesh VL. Roles of Shiga toxins in immunopathology. Toxins (Basel) 2019; 11(4): 212. doi: 10.3390/toxins11040212.
  9. Valilis E, Ramsey A, Sidiq S, et al. Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: systematic review. Int J Infect Dis 2018; (76): 82-87.
  10. Lei T, Tian W, He L, et al. Antimicrobial resistance in Escherichia coli isolates from food animals, animal food products and companion animals in China. Vet Microbiol 2010; 146(1-2): 85-89.
  11. Monecke S, Mariani-Kurkdjian P, Bingen E, et al. Presence of enterohemorrhagic Escherichia coli ST678/O104:H4 in France prior to 2011. Appl Environ Microbiol 2011; 77(24): 8784-8786.
  12. Matussek A, Jernberg C, Einemo IM, et al. Genetic makeup of Shiga toxin-producing Escherichia coliin relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children. Eur J Clin Microbiol Infect Dis 2017; 36(8): 1433-1441.
  13. Gyles Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 2007; 85(13 Suppl): E45-E62.
  14. Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 2011; 17(1): 7-15.
  15. Kuehne A, Bouwknegt M, Havelaar A, et al. Estimating true incidence of O157 and non-O157 Shiga toxin-producing Escherichia coli illness in Germany based on notification data of haemolytic uraemic syndrome. Epidemiol Infect 2016; 144(15): 3305-3315.
  16. Brooks JT, Sowers EG, Wells JG, et al. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J Infect Dis 2005; 192(8): 1422-1429.
  17. Roux D, Danilchanka O, Guillard T, et al. Fitness cost of antibiotic susceptibility during bacterial infection. Sci Transl Med 2015; 7(297): 297ra114. doi: 10.1126/scitranslmed.aab1621.
  18. Guillard T, Pons S, Roux D, et al. Antibiotic resistance and virulence: understanding the link and its consequences for prophylaxis and therapy. Bioessays 2016; 38(7): 682-693.
  19. Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes (Basel) 2017; 8(1): 39. doi: 10.3390/genes8010039
  20. Handayani RS, Siahaan S, Herman MJ. Antimicrobial resistance and its control policy implementation in hospital in Indonesia. JPPPK 2017; 1(2): 131-140.
  21. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3): 268-281.
  22. Amer MM, Mekky HM, Amer AM, et al. Antimicrobial resistance genes in pathogenic Escherichia coli isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics. Vet World 2018; 11(8): 1082-1088.
  23. MacFaddin Biochemical tests for identification of medical bacteria. 3rd ed. Philadelphia, USA: Baltimore, Lippincott Williams & Wilkins 2000; 173-183.
  24. Kok T, Worswich D, Gowans E. Some serological techniques for microbial and viral infections. In: Collee J, Fraser A, Marmion B, et al. (Eds). Mackie and McCartney practical medical microbiology. 14th Edinburgh, UK: Elsevier 1996; 179-204.
  25. Zahraei Salehi MT, Rabani Khourasgani MR, Safarchi A, et al. Detection of stx1, stx2, eae, espB and hly genes in avian pathogenic Escherichia coli by multiplex poly-merase chain reaction. J Vet Res 2007; 62(2): 37-42.
  26. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coliClin Microbiol Rev 1998; 11(3): 450-479.
  27. Melvin PW, James SL. Performance standards for antimicrobial susceptibility testing: 30th Information Supplement. Wayne, USA: Clinical and Laboratory Standards Institute (CLSI); M100-ED30. Available at:http://em100.net/GetDoc.aspx?doc=CLSI%20M100%20ED30:2020&format=SPDF. Accessed Jan 22, 2020.
  28. Wasteson Zoonotic Escherichia coli. Acta Vet Scand Suppl 2001; 95: 79-84.
  29. Jakaria ATM, Islam A, Khatun M. Prevalence, characteristics and antibiogram profiles of Escherichia coli isolated from apparently healthy chickens in Mymensingh, Bangladesh. Microbes Health 2012; 1(1): 27-29.
  30. Kaoud HA, Iraqi Kassem M, Khalil MM, et al. Prevalence of coli serovars in broiler farms: biosecurity and the disinfectants sensitivity in Egypt. WJARR 2020; 7(3): 263-273.
  31. Younis G, Awad A, Mohamed N. Phenotypic and geno-typic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Vet World 2017; 10(10): 1167-1172.
  32. El-Mongy MA, Abd-El-Moneam GM, Moawad AA, et al. Serotyping and virulence genes detection in Escherichia coli isolated from broiler chickens. J Biol Sci 2018; 18(1): 46-50.
  33. Yousef SA, Ammar AM, Ahmed DA. Serological and molecular typing of avian pathogenic Coli originating from outbreaks of colibacillosis in chicken flocks. Int J Sci Res 2015; 4(2): 2082-2088.
  34. Ojo OE, Ajuwape AT, Otesile EB, et al. Potentially zoonotic Shiga toxin-producing Escherichia coli serogroups in the faeces and meat of food-producing animals in Ibadan, Nigeria. Int J Food Microbiol 2010; 142(1-2): 214-221.
  35. Dutta TK, Roychoudhury P, Bandyopadhyay S, et al. Detection & characterization of Shiga toxin producing Escherichia coli (STEC) & enteropathogenic Escherichia coli (EPEC) in poultry birds with diarrhoea. Indian J Med Res 2011; 133(5): 541-545.
  36. MamunM, Parvej MS, Ahamed S, et al. Prevalence and characterization of Shigatoxigenic Escherichia coli in broiler birds in Mymensingh. Bangladesh J Vet Med 2016; 14(1): 5-8.
  37. Himi HA, Parvej S, Rahman MB, et al. PCR based detection of Shiga toxin producing coli in commercial poultry and related environments. TURJAF 2015; 3(6): 361-364.
  38. Wani SA, Samanta I, Bhat MA, et al. Investigation of Shiga toxin-producing Escherichia coli in avian species in India. Lett Appl Microbiol 2004; 39(5): 389-394.
  39. Jamshidi A, Razmyar J, Fallah N. Detection of eaeA, hlyA, stx1 and stx2 genes in pathogenic Escherichia coli isolated from broilers affected with colibacillosis.IranJ Vet Med 2016; 10(2): 97-103.
  40. Widodo A, Effendi MH, Khairullah AR. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from livestock. Sys Rev Pharm 2020; 11(7): 382-392.
  41. Bielaszewska M, Idelevich EA, Zhang W, et al. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain. Antimicrob Agents Chemother 2012; 56(6): 3277-3282.
  42. Corogeanu D, Willmes R, Wolke M, et al. Therapeutic concentrations of antibiotics inhibit Shiga toxin release from enterohemorrhagic coli O104:H4 from the 2011 German outbreak. BMC Microbiol 2012; 12(1): 160. doi: 10.1186/1471-2180-12-160.
  43. Aabed K, Moubayed N, Alzahrani S. Antimicrobial resistance patterns among different Escherichia coli isolates in the Kingdom of Saudi Arabia. Saudi J Biol Sci 2021; 28(7): 3776-3782.
  44. Moawad AA, Hotzel H, Neubauer H, et al. Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli. Gut Pathog 2018; 10(1): 39. doi: 10.1186/s13099-018-0266-5.
  45. Sohail M, Khurshid M, Saleem HG, et al. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. Jundishapur J Microbiol 2015; 8(7): e19272. doi: 10.5812/jjm.19272v2.
  46. Hui P, Zhu P, Liao W, et al. Bacterial flora distribution and antimicrobial resistance of pyogenic liver abscess: a multicenter retrospective study (A report of 897 cases). Chin J Dig Surg 2019; 12: 924-933.
  47. Kwoji ID, Musa JA, Daniel N, et al. Extended-spectrum beta-lactamase-producing Escherichia coli in chickens from small-scale (backyard) poultry farms in Maiduguri, Nigeria. Int J One Health 2019; 5: 26-30.
  48. No time to wait: Securing the future from drug-resistant infections - Report to the Secretary-General of the United Nations. Interagency Coordination Group on Antimicrobial Resistance (IACG). Available at: https:// reliefweb.int/report/world/no-time-wait-securing-fut-ure-drug-resistant-infections-report-secretary-general -united. Accessed April 29, 2019.
  49. Aworh MK, Kwaga JKP, Hendriksen RS, et al. Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrob Resist Infect Control 2021; 10(1): 58. doi: 10.1186/s13756-021-00930-x.
  50. Mgaya FX, Matee MI, Muhairwa AP, et al. Occurrence of multidrug resistant Escherichia coli in raw meat and cloaca swabs in poultry processed in slaughter slabs in Dar es Salaam, Tanzania. Antibiotics (Basel) 2021; 10(4): 343. doi: 10.3390/antibiotics10040343.