Document Type : Original Article

Authors

1 Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran

Abstract

Volatile compounds of anal sac secretions are odorant chemicals used across the carnivores for social communication such as identifying individuals and group membership. Odor profiles taken from expressed anal sac secretions of some species of carnivores have been detected in previous studies. In this study, the volatile compounds of anal sac secretions between five male and five female domestic dogs (Canis lupus familiaris) were compared. Volatile chemicals were extracted, separated, and analyzed by gas chromatography-mass spectrometry with solid-phase micro-extraction and identified from their electron ionization mass spectra and Kovats retention indices. The results showed the presence of various types of compounds including organic fatty acids, ketones, aldehydes, esters, and alcohols in the anal sac secretions of dogs. Greater amounts of diversity and esters, and lower amounts of alcohols were detected in the anal sac secretions of females compared to males. This was accompanied by finding citrate and acetic acid ester only in the females. Furthermore, presence of some sex-specific organic compounds like dimethylcyclopentyl ethanone indicates that the volatile profiles of anal sac secretions in 10 domestic dogs are differentiated by host sex.

Keywords

  1. Gorman ML, Trowbridge The role of odor in the social lives of carnivores. In: Gittleman JL (Ed). Carnivore behavior, ecology, and evolution.1st ed. New York, USA: Cornell University Press 1989; 57-88.
  2. Donovan C. Some clinical observations on sexual attraction and deterrence in dogs and cattle. Vet Med Small Anim Clin 1967; 62(11): 1047-1051.
  3. Wood WF, Sollers BG, Dragoo GA, et al. Volatile components in defensive spray of the hooded skunk, Mephitis macroura. J Chem Ecol 2002; 28(9): 1865-1870.
  4. Begg CM, Begg KS, Du Toit JT, et al. Scent-marking behaviour of the honey badger, Mellivora capensis (Mustelidae), in the southern Kalahari. Anim Behav 2003; 66(5): 917-929.
  5. Drea CM, Vignieri SN, Kim HS, et al. Responses to olfactory stimuli in spotted hyenas (Crocuta crocuts): II. Discrimination of conspecific scent. J Comp Psychol 2002; 116(4): 342-349.
  6. Asa CS, Mech LD, Seal US. The use of urine, faeces, and anal-gland secretions in scent-marking by a captive wolf (Canis lupus) pack. Anim Behav 1985; 33(3): 1034-1036.
  7. Clapperton BK, Minot EO, Crump DR. An olfactory recognition system in the ferret Mustela furo L. (Carnivora: Mustelidae). Anim Behav 1988; 36(2): 541-553.
  8. Gorman ML. A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Anim Behav 1976; 24(1): 141-145.
  9. Zhang JX, Liu D, Sun L, et al. Potential chemosignals in the anogenital gland secretion of giant pandas, Ailuropoda melanoleuca, associated with sex and individual identity. J Chem Ecol 2008; 34(3): 398-407.
  10. Burgener N, Dehnhard M, Hofer H, et al. Does anal gland scent signal identity in the spotted hyaena? Anim Behav 2009; 77(3): 707-715.
  11. Rosell F, Jojola SM, Ingdal K, et al. Brown bears possess anal sacs and secretions may code for sex. J Zool 2011; 283(2): 143-152.
  12. Yuan H, Liu D, Sun L, et al. Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Can J Zool 2004; 82(10): 1596-1604.
  13. Zhang JX, Soini HA, Bruce KE, et al. Putative chemosignals of the ferret (Mustela furo) associated with individual and gender recognition. Chem Senses 2005; 30(9): 727-737.
  14. Zhang JX, Sun L, Zhang ZB, et al. Volatile compounds in anal gland of Siberian weasels (Mustela sibirica) and steppe polecats ( eversmanni). J Chem Ecol 2002; 28(6): 1287-1297.
  15. Albone ES, Perry GC. Anal sac secretion of the red fox, Vulpes vulpes; volatile fatty acids and diamines: implications for a fermentation hypothesis of chemical recognition. J Chem Ecol 1976; 2: 101-111.
  16. Apps P, Mmualefe L, McNutt JW. Identification of volatiles from the secretions and excretions of African wild dogs (Lycaon pictus). J Chem Ecol 2012; 38(11): 1450-1461.
  17. Decker DM, Ringelberg D, White DC. Lipid components in anal scent sacs of three mongoose species (Helogale parvula, Crossarchus obscurus, Suricata suricatta). J Chem Ecol 1992; 18(9): 1511-1524.
  18. Preti G, Muetterties EL, Furman JM, et al. Volatile constituents of dog (Canis familiaris) and coyote (Canis latrans) anal sacs. J Chem Ecol 1976; 2(2): 177-186.
  19. Raymer J, Wiesler D, Novotny M, et al. Chemical investigations of wolf (Canis lupus) anal-sac secretion in relation to breeding season. J Chem Ecol 1985; 11(5): 593-608.
  20. Shoieb AM, Hanshaw DM. Anal sac gland carcinoma in 64 cats in the United Kingdom (1995-2007). Vet Pathol 2009; 46(4): 677-683.
  21. Feldman HN. Methods of scent marking in the domestic cat. Can J Zool 1994; 72(6): 1093-1099.
  22. Mellanby RJ, Foale R, Friend E, et al. Anal sac adenocarcinoma in a Siamese cat. J Feline Med Surg 2002; 4(4): 205-207.
  23. Parry NM. Anal sac gland carcinoma in a cat. Vet Pathol 2006; 43(6): 1008-1009.
  24. Frankel JL, Scott DW, Erb HN. Gross and cytological characteristics of normal feline anal-sac secretions. J Feline Med Surg 2008; 10(4): 319-323.
  25. Vitale Shreve KR, Udell MA. What’s inside your cat’s head? A review of cat (Felis silvestris catus) cognition research past, present and future. Anim Cogn 2015; 18(6): 1195-1206.
  26. Shreve KRV, Udell MA. Stress, security, and scent: The influence of chemical signals on the social lives of domestic cats and implications for applied settings. Appl Anim Behav Sci 2017; 187: 69-76.
  27. Miyazaki M, Nishimura T, Hojo W, et al. Potential use of domestic cat (Felis catus) urinary extracts for mani-pulating the behavior of free-roaming cats and wild small felids. Appl Anim Behav Sci 2017; 196: 52-60.
  28. Varlamov O, Bethea CL, Roberts CT Jr. Sex specific differences in lipid and glucose metabolism. Front Endocrinol (Lausanne) 2015; 5: 241. doi: 10.3389/fendo.2014.00241.
  29. Yamaguchi MS, Ganz HH, Cho AW, et al. Bacteria isolated from Bengal cat (Felis catus × Prionailurus bengalensis) anal sac secretions produce volatile compounds potentially associated with animal signaling. PloS One 2019; 14(9): e0216846. doi:10.1371/journal.pone.0216846.
  30. McLean S, Nichols DS, Davies NW. Volatile scent chemicals in the urine of the red fox, Vulpes vulpes. PloS One 2021; 16(3): e0248961. doi: 10.1371/ journal. pone.0248961.
  31. Symonds MR, Elgar MA. The evolution of pheromone diversity. Trends Ecol Evol 2008; 23(4): 220-228.
  32. Ebling FJ. Hormonal control of mammalian skin glands. In: Müller-Schwarze D, Mozell MM (Eds). Chemical signals in vertebrates. 1st New York, USA: Plenum Press 1977; 17-33.
  33. Raymer J, Wiesler D, Novotny M, et al. Chemical scent constituents in urine of wolf (Canis lupus) and their dependence on reproductive hormones. J Chem Ecol 1986; 12(1): 297-314.
  34. Kim YS, Unno T, Kim BY, et al. Sex difference in gut microbiota. World J Mens Health 2020; 38(1): 48-60.
  35. Hudry B, de Goeij E, Mineo A, et al. Sex differences in intestinal carbohydrate metabolism promotes food intake and sperm maturation. Cell 2019; 178(4): 901-918.
  36. Ezenwa VO, Gerardo NM, Inouye DW, et al. Animal behavior and the microbiome. Science 2012; 338(6104): 198-199.
  37. Ezenwa VO, Williams AE. Microbes and animal olfactory communication: Where do we go from here? Bioessays 2014; 36(9): 847-854.
  38. Davis TS, Crippen TL, Hofstetter RW, et al. Microbial volatile emissions as insect semiochemicals. J Chem Ecol 2013; 39(7): 840-859.
  39. Yoon K, Kim N. Roles of sex hormones and gender in the gut microbiota. J Neurogastroenterol Motil 2021; 27(3): 314-325.
  40. Tomberlin JK, Crippen TL, Wu G, et al. Indole: an evolutionarily conserved influencer of behavior across kingdoms. Bioessays 2017; 39(2): doi: 10.1002/ bies.201600203.
  41. Yoo HH, Chung HJ, Lee J, et al. Enzymatic C-demethylation of 1-[2-(5-tert-butyl-[1, 3, 4] oxadiazole-2-carbonyl)-4-fluoro-pyrrolidin-1-yl]-2-(2-hydroxy-1,1 -dimethyl-ethylamino)-ethanone (LC15-0133) in rat liver microsomes. Drug Metab Dispos 2008; 36(3): 485-489.
  42. Alcicek FC, Mohaissen T, Bulat K, et al. Sex-specific differences of adenosine triphosphate levels in red blood cells isolated from ApoE/LDLR double-deficient mice. Front Physiol 2022; 13: 839323. doi: 10.3389/fphys.2022.839323.