Document Type : Original Article


1 Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Microbiology, Faculty of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran

3 Adolfo Lutz Institute, Center of Bacteriology, National Reference Laboratory for E. coli enteric infections and HUS, São Paulo, Brazil


The present study reported the first serotyping (O:H typing) data documented in Shiga toxin-producing Escherichia coli (STEC) strains of animal origin in Iran in isolates recovered between 2008 to 2016. A total number of 75 STEC strains previously isolated from fecal samples of cattle, sheep, goats, pigeons, humans, and deer were assessed by different polymerase chain reaction (PCR) assays detecting the major virulence genes of STEC and phylogroups. Then, the strains were tested for the 16 important O-groups by PCR. Finally, twenty strains were selected for H-genotyping by PCR plus sequencing. The predominant serogroup was O113 which was detected in nine isolates (five cattle, 55.50%; two goats, 22.20%; two red deer, 22.20%) followed by O26 (3/3, 100%) in cattle, O111 (3/3, 100%) in cattle, O5 (3/3, 100%) in sheep, O63 (1/1, 100%) in pigeon, O75 (2/2, 100%) in pigeons, and O128 in goats (2/3, 66.60%) and pigeon (1/3, 33.30%). The most important recognized serotypes were O113:H21 in cattle (2/3) and goat (1/3), O113:H4 in red deer (1/1), O111:H8 in calves (2/2), O26:H11 in calve (1/1), O128:H2 in goats (2/3) and pigeon (1/3), and O5:H19 in sheep (3/3). One cattle strain carrying stx1, stx2, eae, and Ehly genes belonged to O26:H29 serotype. Most strains with determined O-groups were from the bovine source that highlighted the importance of cattle as reservoirs of potentially pathogenic serovars. The present study suggested that the top seven non-O157 serogroups should be assessed along with O157 in all future research and clinical diagnostics of STEC in Iran.


  1. Capps KM, Ludwig JB, Shridhar PB, et al. Identification, Shiga toxin subtypes and prevalence of minor serogroups of Shiga toxin-producing Escherichia coli in feedlot cattle feces. Sci Rep 2021; 11(1): 8601. doi: 10.1038/s41598-021-87544-w.
  2. AL-Mazini MA. Molecular study for Escherichia coli isolates causing diarrhea at children. J Med Res Health Sci 2021; 4(7): 1329-1341.
  3. Dixon BP, Gruppo RA. Atypical hemolytic uremic syn-drome. Pediatr Clin North Am 2018; 65(3): 509-525.
  4. Gyles CL. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 2007; 85(13 Suppl): E45-E62.
  5. Hooman N, Khodadost M, Sadeghian M, et al. The prevalence and incidence of hemolytic uremic syndrome in Iran, a systematic review and meta-analysis. Iran J Kidney Dis 2020; 14(3): 173-183.
  6. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2(2): 123-140.
  7. Ahmadi E, Mardani K, Amiri A. Molecular detection and antimicrobial resistance patterns of Shiga toxigenic Escherichia coli isolated from bovine subclinical mastitis milk samples in Kurdistan, Iran. Arch Razi Inst 2020; 75(2): 169-177.
  8. Ludwig JB, Shi X, Shridhar PB, et al. Multiplex PCR assays for the detection of one hundred and thirty seven serogroups of Shiga toxin-producing Escherichia coli associated with cattle. Front Cell Infect Microbiol 2020; 10: 378. doi: 10.3389/fcimb.2020.00378.
  9. Shinde DB, Singhvi S, Koratkar SS, et al. Isolation and characterization of Escherichia coli serotype O157: H7 and other verotoxin-producing E. coli in healthy Indian cattle. Vet World 2020; 13(10): 2269-2274.
  10. Beutin L, Miko A, Krause G, et al. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes. Appl Environ Microbiol 2007; 73(15): 4769-4775.
  11. Haddad N, Johnson N, Kathariou S, et al. Next generation microbiological risk assessment-Potential of omics data for hazard characterisation. Int J Food Microbiol 2018; 287: 28-39.
  12. Welinder-Olsson C, Badenfors M, Cheasty T, et al. Genetic profiling of enterohemorrhagic Escherichia coli strains in relation to clonality and clinical signs of infection. J Clin Microbiol 2002; 40(3): 959-964.
  13. Brunder W, Schmidt H, Frosch M, et al. The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements. Microbiology (Reading). 1999; 145(Pt 5): 1005-1014.
  14. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli Clin Microbiol Rev 1998; 11(3): 450-479.
  15. Bettelheim KA, Goldwater PN. Serotypes of non-O157 Shigatoxigenic Escherichia coli (STEC). Adv Microbiol 2014; 4(7): 377-389.
  16. Bettelheim KA. The non-O157 Shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol 2007; 33(1): 67-87.
  17. Jajarmi M, Imani Fooladi AA, Badouei MA, et al. Virulence genes, Shiga toxin subtypes, major O-sero-groups, and phylogenetic background of Shiga toxin-producing Escherichia coli strains isolated from cattle in Iran. Microb Pathog 2017; 109: 274-279.
  18. Koochakzadeh A, Askari Badouei M, Mazandarani E, et al. Survey on O157: H7 enterohemorrhagic Escherichia coli (EHEC) in cattle in Golestan province, Iran. Iran J Microbiol 2014; 6(4): 276-280.
  19. Aslani MM, Bouzari S. Characterization of virulence genes of non-O157 Shiga toxin-producing Escherichia coli isolates from two provinces of Iran. Jpn J Infect Dis 2009; 62(1): 16-19.
  20. Askari Badouei M, Jajarmi M, Mirsalehian A. Virulence profiling and genetic relatedness of Shiga toxin-producing Escherichia coli isolated from humans and ruminants. Comp Immunol Microbiol Infect Dis 2015; 38: 15-20.
  21. Paton AW, Paton JC. Direct detection and characterization of Shiga toxigenic Escherichia coli by multiplex PCR for stx1, stx2, eae, ehxA, and saa. J Clin Microbiol 2002; 40(1): 271-244.
  22. Schmidt H, Scheef J, Morabito S, et al. A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl Environ Microbiol 2000; 66(3): 1205-1208.
  23. DebRoy C, Roberts E, Fratamico PM. Detection of O antigens in Escherichia coli. Anim Health Res Rev 2011; 12(2): 169-185.
  24. Li Y, Liu D, Cao B, et al. Development of a serotype-specific DNA microarray for identification of some Shigella and pathogenic Escherichia coli J Clin Microbiol 2006; 44(12): 4376-4383.
  25. Iguchi A, Iyoda S, Seto K, et al. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol 2015; 53(8): 2427-2432.
  26. Bielaszewska M, Mellmann A, Zhang W, et al. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 2011; 11(9): 671-676.
  27. Sánchez S, Llorente MT, Echeita MA, et al. Development of three multiplex PCR assays targeting the 21 most clinically relevant serogroups associated with Shiga toxin-producing E. coli infection in humans. PLoS One 2015; 10(1): e0117660. doi: 10.1371/journal.pone. 0117660.
  28. Li D, Liu B, Chen M, et al. A multiplex PCR method to detect 14 Escherichia coli serogroups associated with urinary tract infections. J Microbiol Methods 2010; 82(1): 71-77.
  29. Machado J, Grimont F, Grimont PA. Identification of Escherichia coli flagellar types by restriction of the amplified fliC gene. Res Microbiol 2000; 151(7): 535-546.
  30. Clermont O, Christenson JK, Denamur E, et al. The Clermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environ Microbiol Rep 2013; 5(1): 58-65.
  31. Gutema FD, Rasschaert G, Agga GE, et al. Occurrence, molecular characteristics, and antimicrobial resistance of Escherichia Coli O157 in cattle, beef, and humans in Bishoftu Town, central Ethiopia. Foodborne Pathog Dis 2021; 18(1): 1-7
  32. Hoyle DV, Keith M, Williamson H, et al. Prevalence and epidemiology of non-O157 Escherichia coli serogroups O26, O103, O111, and O145 and Shiga toxin gene carriage in Scottish cattle, 2014-2015. Appl Environ Microbiol 2021; 87(10): e03142-20. doi: 10.1128/ AEM.03142-20.
  33. Scheutz F. Taxonomy meets public health: The case of Shiga toxin‐producing Escherichia coli. Microbiol Spectr 2014; 2(3): doi: 10.1128/microbiolspec.EHEC-0019-2013.
  34. Karmali MA. Infection by verocytotoxin-producing Escherichia coli. Clin Microbiol Rev 1989; 2(1): 15-38.
  35. Scotland SM, Willshaw GA, Smith HR, et al. Properties of strains of Escherichia coli belonging to serogroup O157 with special reference to production of Vero cytotoxins VTl and VT2. Epidemiol Infect 1987; 99(3): 613-624.
  36. Loconsole D, Giordano M, Centrone F, et al. Epidemiology of Shiga toxin-producing Escherichia coli infections in southern Italy after implementation of symptom-based surveillance of bloody diarrhea in the pediatric population. Int J Environ Res Public Health 2020; 17(14): 5137. doi: 10.3390/ijerph17145137
  37. Fremaux B, Raynaud S, Beutin L, et al. Dissemination and persistence of Shiga toxin-producing Escherichia coli (STEC) strains on French dairy farms. Vet Microbiol 2006; 117(2-4): 180-191.
  38. Mercado EC, Gioffré A, Rodríguez SM, et al. Non‐O157 Shiga toxin‐producing Escherichia coli isolated from diarrhoeic calves in Argentina. J Vet Med B Infect Dis Vet Public Health 2004; 51(2): 82-88.
  39. Hooman N, Khodadost M, Ahmadi A, et al. The prevalence of Shiga toxin-producing Escherichia coli in patients with gastroenteritis in Iran, systematic review and meta-analysis. Iran J Kidney Dis 2019; 13(3): 139-150.
  40. Askari Badouei M, Morabito S, Najafifar A, et al. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains. Infect Genet Evol 2016; 39: 342-348.
  41. Mellmann A, Bielaszewska M, Köck R, et al. Analysis of collection of hemolytic uremic syndrome–associated enterohemorrhagic Escherichia coli. Emerg Infect Dis 2008; 14(8): 1287-1290.
  42. Monaghan AM, Byrne B, McDowell D, et al. Characterization of farm, food, and clinical Shiga toxin–producing Escherichia coli (STEC) O113. Foodborne Pathog Dis 2012; 9(12): 1088-1096.
  43. Domingue G, Willshaw GA, Smith HR, et al. DNA‐based subtyping of verocytotoxin‐producing Escherichia coli (VTEC) O128ab:H2 strains from human and raw meat sources. Lett Appl Microbiol 2003; 37(6): 433-437.
  44. Irino K, Kato MA, Vaz TM, et al. Serotypes and virulence markers of Shiga toxin-producing Escherichia coli (STEC) isolated from dairy cattle in São Paulo State, Brazil. Vet Microbiol 2005; 105(1): 29-36.
  45. Paton AW, Woodrow MC, Doyle RM, et al. Molecular characterization of a Shiga toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J Clin Microbiol 1999; 37(10): 3357-3361.
  46. Feng PC, Delannoy S, Lacher DW, et al. Genetic diversity and virulence potential of Shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources. Appl Environ Microbiol 2014; 80(15): 4757-4763.
  47. Fukushima H, Hoshina K, Gomyoda M. Long-term survival of Shiga toxin-producing Escherichia coli O26, O111, and O157 in bovine feces. Appl Environ Microbiol 1999; 65(11): 5177-5181.
  48. Newton HJ, Sloan J, Bulach DM, et al. Shiga toxin–producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg Infect Dis 2009; 15(3): 372-380.
  49. Karch H, Tarr PI, Bielaszewska M. Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 2005; 295(6-7): 405-418.
  50. Liu Y, Li H, Chen X, et al. Characterization of Shiga toxin‐producing Escherichia coli isolated from cattle and sheep in Xinjiang province, China, using whole‐genome sequencing. Transbound Emerg Dis 2022; 69(2): 413-422.