Document Type : Original Article

Authors

1 MSc student, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

Q fever is a worldwide zoonosis caused by an obligate intra-cellular pathogen called Coxiella burnetii affecting a broad range of animal hosts including horses. Most of the isolates found carry plasmids which genetic studies of C. burnetii strains suggest a critical role in C. burnetii survival. The correlation between an isolated plasmid type and the chronic or acute nature of the disease has always been controversial. This study was conducted to investigate the prevalence of C. burnetii QpH1 and QpDG plasmids in horses and assess the potential role of these species as reservoirs of infection and transmission. Nested-polymerase chain reaction (PCR) assays were performed on 320 blood serum samples drawn from horses in West Azerbaijan province, Iran, in 2020. In total, 26 (8.13%) Q fever-positive samples based on containing the IS1111 gene were tested by nested-PCR approach to amplify QpH1 and QpDG plasmid segments. The QpH1 and QpRS plasmid-specific sequences were identified in 19 (73.07%) and none in the serum samples, respectively. According to the present study, the age of the animal can be considered as an important risk factor for the prevalence of C. burnetii; but, the season, sex, and breed of the horse had no effect on the prevalence of disease. The results indicate that nested-PCR method could be suitable for routine diagnosis, to gather new information about the shedding of C. burnetii, and to improve the knowledge of contamination routes.

Keywords

  1. Knap N, Žele D, Glinšek Biškup U, et al. The prevalence of Coxiella burnetii in ticks and animals in Slovenia. BMC Vet Res 2019; 15(1): 368. doi: 10.1186/s12917-019-2130-3.
  2. Mohabbati Mobarez A, Bagheri Amiri F, Esmaeili S. Seroprevalence of Q fever among human and animal in Iran; A systematic review and meta-analysis. PLoS Negl Trop Dis 2017; 11(4): e0005521. doi: 10.1371/ journal.pntd.0005521.
  3. Colville J, Berryhill DL. Q fever. In: Colville J, Berryhill DL (Eds). Handbook of zoonoses: identification and prevention. St. Louis, USA: Mosby Elsevier 2007; 139-141.
  4. Desjardins I, Joulié A, Pradier S, et al. Seroprevalence of horses to Coxiella burnetii in an Q fever endemic area. Vet Microbiol 2018: 215: 49-56.
  5. Runge M, Hilbert A, Henning K. Contribution to the occurrence of Coxiella burnetii-infection in horses [German]. Prakt Tierarzt 2012; 93(3): 220-222.
  6. Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12(4): 518-553.
  7. Marenzoni ML, Stefanetti V, Papa P, et al. Is the horse a reservoir or an indicator of Coxiella burnetii infection? Systematic review and biomolecular investigation. Vet Microbiol 2013; 167(3-4): 662-669.
  8. Leon A, Richard E, Fortier C, et al. Molecular detection of Coxiella burnetii and Neospora caninum in equine aborted foetuses and neonates. Prev Vet Med 2012; 104(1-2):179-183.
  9. Khademi P, Ownagh A, Ataei B, et al. Molecular detection of Coxiella burnetii in horse sera in Iran. Comp Immunol Microbiol Infect Dis 2020; 72: 101521. doi: 10.1016/j.cimid.2020.101521.
  10. Runge M, Binder A, Schotte U, et al. Investigations concerning the prevalence of Coxiella burnetii and Chlamydia abortus in sheep in correlation with management systems and abortion rate in Lower Saxony in 2004. Berl Munch Tierarztl Wochenschr 2012; 125(3-4): 138-143.
  11. Beare PA, Unsworth N, Andoh M, et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 2009: 77(2): 642-656.
  12. Voth DE, Beare PA, Howe D, et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 2011: 193(7): 1493-1503.
  13. Beare PA, SamueJE, Howe D, et al. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 2006;188(7): 2309-2324.
  14. Zhang GQ, Hotta A, Mizutani M, et al. Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol 1998: 36(8): 2210-2213.
  15. Maturana P, Graham JG, Sharma UM, et al. Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii. J Bacteriol 2013; 195(14): 3269-3276.
  16. Russell-Lodrigue KE, Andoh M, Poels MW, et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun 2009; 77(12): 5640-5650.
  17. Samuel JE, Frazier ME, Mallavia LP. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 1985; 49(3): 775-779.
  18. Glazunova O, Roux V, Freylikman O, et al. Coxiella burnetii Emerg Infect Dis 2005; 11(8): 1211-1217.
  19. Willems H, Thiele D, Krauss H. Plasmid based differentiation and detection of Coxiella burnetii in clinical samples. Eur J Epidemiol 1993; 9(4): 411-418.
  20. Angelakis E, Million M, D'Amato F, et al. Q fever and pregnancy: disease, prevention, and strain specificity. Eur J Clin Microbiol Infect Dis 2013; 32(3): 361-368.
  21. Berri M, Laroucau K, Rodolakis A. The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Vet Microbiol 2000; 72(3-4): 285-293.
  22. Parisi A, Fraccalvieri R, Cafiero M, et al. Diagnosis of Coxiella burnetii-related abortion in Italian domestic ruminants using single-tube nested PCR. Vet Microbiol 2006; 118(1-2): 101-106.
  23. Minnick MF, Small CL, Frazier ME, et al. Analysis of the cbhE' plasmid gene from acute disease-causing isolates of Coxiella burnetii. Gene 1991; 103(1); 113-118.
  24. Minnick MF, Heinzen RA, Frazier ME, et al. Characterization and expression of the cbbE’ gene of Coxiella burnetii. J Gen Microbiol 1990; 136(6): 1099-1107.
  25. Hilbink F, Penrose M, Kovacova E, et al. Q fever is absent from New Zealand. Int J Epidemiol 1993; 22(5): 945-949.
  26. Rašeta-Vidić B, Mihajlović B. Q-fever in domestic animals in SAP Vojvodina [Bosnian]. Glasnik; 27(9): 695-703.
  27. Joshi MV, Padbidri VS, Rodrigues FM, et al. Prevalence of Coxiella burnetii infection among humans and domestic animals of Rajasthan State, India. J Hyg Epidemiol Microbiol Immunol 1979; 23(1): 67-73.
  28. Fenollar F, Fournier PE, Raoult D. Molecular detection of Coxiella burnetii in the sera of patients with Q fever endocarditis or vascular infection. J Clin Microbiol 2004; 42(11): 4919-4924.
  29. Eldin C, Mélenotte C, Mediannikov O, et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev 2017; 30(1): 115-190.
  30. Porter SR, Czaplicki G, Mainil J, et al. Q fever: current state of knowledge and perspectives of research of a neglected zoonosis. Int J Microbiol 2011; 2011: 248418. doi: 10.1155/2011/248418.
  31. Reimer LG. Q fever. Clin Microbiol Rev 1993; 6(3); 193-198.
  32. Luo S, Lu S, Fan H, et al. The Coxiella burnetii QpH1 plasmid is a virulence factor for colonizing bone marrow-derived murine macrophages. J Bacteriol 2021;203(9): e00588-20. doi: 10.1128/JB.00588-20.
  33. Valková D, Kazár J. A new plasmid (QpDV) common to Coxiella burnetii isolates associated with acute and chronic Q fever. FEMS Microbiol Lett 1995; 125(2–3): 275-280.
  34. Seo MG, Lee SH, VanBik D, et al. Detection and genotyping of Coxiella burnetii and Coxiella-like bacteria in horses in South Korea. PLoS One 2016; 11(5): e0156710. doi: 10.1371/journal.pone.0156710.
  35. Khayyat Khameneie M, Asadi J, Khalili M, et al. The First serological study of Coxiella burnetii among pregnant women in Iran. Iran J Public Health 2016; 45(4): 523-530.