Document Type : Original Article

Authors

1 Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Department of Medical Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran

3 Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

Coccidiosis is the leading parasitic disease in poultry. One of the most critical Eimeria species, Eimeria tenella, lives inside the cecal epithelial cells and induces bloody coccidiosis. The present study evaluated the effect of radiation-attenuated E. tenella oocytes mixed with inulin adjuvant on broiler chicken. Initially, the effect of irradiation on oocyst attenuation was confirmed. Then, one-day-old broilers (n = 90) were divided into nine groups on seven days of age as follow: Group 1 (400 attenuated oocysts + 1.00 mg of adjuvant), group 2 (400 attenuated oocysts + 0.50 mg adjuvant), group 3 (200 attenuated oocysts + 1.00 mg of adjuvant), group 4 (200 attenuated oocysts + 0.50 mg adjuvant), group 5 (1.00 mg adjuvant), group 6 (400 attenuated oocysts), group 7 (commercial vaccine), group 8 (negative control) and group 9 (blank). On day 21, we performed a challenge with E. tenella oocytes and investigated oocyst output and average weekly weight throughout the study. At the end of the study, we evaluated macroscopic lesion, histology, cytokine level and leukogram status. The results showed a statistically significant difference among groups. Furthermore, the optimal dose was 400 irradiated oocysts and 1.00 mg of inulin. Moreover, an X-ray could reduce the virulence of E. tenella oocytes. Inulin alone or combined with attenuated oocysts showed an acceptable effect on evaluated parameters.

Keywords

Main Subjects

  1. Abdisa T, Hasen R, Tagesu T, et al. Poultry coccidiosis and its prevention, control. J Vet Anim Res 2019; 2(1):1-6.
  2. Mesa-Pineda C, Navarro-Ruíz JL, López-Osorio S, et al. Chicken coccidiosis: from the parasite lifecycle to control of the disease. Front Vet Sci 2021; 8: 787653. doi: 10.3389/fvets.2021.787653.
  3. Razmi GR, Kalideri GA. Prevalence of subclinical coccidiosis in broiler-chicken farms in the municipality of Mashhad, Khorasan, Iran. Prev Vet Med 2000; 44(3-4): 247-253.
  4. Williams RB. A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. Int J Parasitol 1999; 29(8): 1209-1229.
  5. Georgieva NV, Koinarski V, Gadjeva V. Antioxidant status during the course of Eimeria tenella infection in broiler chickens. Vet J 2006; 172(3): 488-492.
  6. Fatoba AJ, Adeleke MA. Diagnosis and control of chicken coccidiosis: a recent update. J Parasit Dis 2018; 42(4): 483-493.
  7. Peek HW, Landman WJ. Coccidiosis in poultry: anticoccidial products, vaccines and other prevention strategies. Vet Q 2011; 31(3):143-161.
  8. Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 2006; 5(1): 143-163.
  9. Jenkins MC, Augustine PC, Danforth HD, et al. X-irradiation of Eimeria tenella oocysts provides direct evidence that sporozoite invasion and early schizont development induce a protective immune response(s). Infect Immun1991; 59(11): 4042-4048.
  10. Sandberg FB, Emmans GC, Kyriazakis I. The effects of pathogen challenges on the performance of naïve and immune animals: the problem of prediction. Animal 2007; 1(1): 67-86.
  11. Marugan-Hernandez V, Cockle C, Macdonald S, et al. Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system. Parasit Vectors 2016; 9(1): 463. doi: 10.1186/ s13071-016-1756-2.
  12. Chapman HD. Practical use of vaccines for the control of coccidiosis in the chicken. Worlds Poult Sci J 2000; 56(1): 7-20.
  13. Antia R, Ahmed H, Bull JJ. Directed attenuation to enhance vaccine immunity. PLoS Comput Biol 2021; 17(2): e1008602. doi: 10.1371/journal. pcbi.1008602.
  14. Shivaramaiah C, Barta JR, Hernandez-Velasco X, et al. Coccidiosis: recent advancements in the immunobiology of Eimeria species, preventive measures, and the importance of vaccination as a control tool against these Apicomplexan parasites. Vet Med (Auckl) 2014; 5: 23-34.
  15. Raja AI, Stanisic DI, Good MF. Chemical attenuation in the development of a whole-organism malaria vaccine. Infect Immun 2017; 85(7): e00062-17. doi: 10.1128/IAI.00062-17.
  16. Seo HS. Application of radiation technology in vaccines development. Clin Exp Vaccine Res 2015; 4(2):
    145-158.
  17. Li Y, Wang Z, Liu X, et al. X-ray irradiated vaccine confers protection against pneumonia caused by Pseudomonas aeruginosa. Sci Rep 2016; 6: 18823. doi: 10.1038/srep18823.
  18. O'Hagan DT. Vaccine adjuvants: preparation methods and research protocols. New Jersey, USA: Humana Totowa 2000; 49-63.
  19. Bhatia SS, Pillai SD. Ionizing radiation technologies for vaccine development - a mini review. Front Immunol 2022; 13: 845514. doi: 10.3389/fimmu.2022.845514.
  20. Tafalla C, Bøgwald J, Dalmo RA. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. Fish Shellfish Immunol 2013; 35(6): 1740-1750.
  21. Soltani M, Shafiei SH, Yosefi P, et al. Effect of Montanide™ IMS 1312 VG adjuvant on efficacy of Yersinia ruckeri vaccine in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 2014; 37(1): 60-65.
  22. Guaragni A, Boiago MM, Bottari NB, et al. Feed supplementation with inulin on broiler performance and meat quality challenged with Clostridium perfringens: infection and prebiotic impacts. Microb Pathog 2020; 139: 103889. doi: 10.1016/j.micpath. 2019.103889.
  23. Birmani MW, Nawab A, Ghani MW, et al. A review: role of inulin in animal nutrition. J Food Technol Res 2019; 6(1): 18-27.
  24. Leyva-Porras C, López-Pablos AL, Alvarez-Salas C, et al. Physical properties of inulin and technological applications. In: Ramawat KG, Mérillon JM (Eds). Polysaccharides: bioactivity and biotechnology. New York, USA: Springer International Publishing 2015; 959-984.
  25. Sun B, Yu S, Zhao D, et al. Polysaccharides as vaccine adjuvants. Vaccine 2018; 36(35): 5226-5234.
  26. Ferrell KC, Stewart EL, Counoupas C, et al. Intrapulmonary vaccination with delta-inulin adjuvant stimulates non-polarised chemotactic signalling and diverse cellular interaction. Mucosal Immunol 2021; 14(3): 762-773.
  27. Behera T, Swain P. Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell Immunol 2011; 271(2): 350-359.
  28. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
  29. Thabet A, Schmäschke R, Fertey J, et al. Eimeria tenella oocysts attenuated by low energy electron irradiation (LEEI) induce protection against challenge infection in chickens. Vet Parasitol 2019; 266: 18-26.
  30. Kumar S, Tummala H. Development of soluble inulin microparticles as a potent and safe vaccine adjuvant and delivery system. Mol Pharm 2013; 10(5): 1845-1853.
  31. Reid WM, Hines TK, Johnson J, et al. Coccidiosis: effects of high environmental temperatures on anticoccidial protection. Poult Sci 1976; 55(4): 1436-1441.
  32. Nims RW, Plavsic M. Efficacy of electron beam for viral inactivation. J Microb Biochem Technol 2015; 7(4): 173-176.
  33. Fetterer RH, Jenkins MC, Miska KB, et al. Evaluation of an experimental irradiated oocyst vaccine to protect broiler chicks against avian coccidiosis. Avian Dis 2014; 58(3): 391-397.
  34. Long PL, Joyner LP. Problems in the identification of species of Eimeria. J Protozool 1984, 31(4): 535-541.
  35. Thebo P, Lunden A, Uggla A, et al. Identification of seven Eimeria species in Swedish domestic fowl. Avian Pathol 1998; 27(6): 613-617.
  36. Cervantes HM, McDougald LR, Jenkinss MC. Coccidiosis. In: Swayne DE (Ed). Diseases of Poultry, 14th New Jersey, USA: Wiley & Sons 2020; 1193-1217.
  37. Reid WM. Recommending sanitary practices for coccidiosis control. In: Coccidia and intestinal coccidiomorphs, In Proceedings: The 5th International coccidiosis conference. Tours, France 1989; 371-376.
  38. McDougald LR, Reid WM. Coccidiosis. In: Diseases of poultry. 9th London, UK: Wolfe Publishing Ltd 1991; 780-797.
  39. Afrough B, Eakins J, Durley-White S, et al. X-ray inactivation of RNA viruses without loss of biological characteristics. Sci Rep 2020; 10(1): 21431. doi: 10.1038/s41598-020-77972-5.
  40. Fertey J, Standfest B, Beckmann J, et al. Low-energy electron irradiation (LEEI) for the generation of inactivated bacterial vaccines. Methods Mol Biol 2022; 2414: 97-113.
  41. Tobin GJ, Tobin JK, Gaidamakova EK, et al. A novel gamma radiation-inactivated sabin-based polio vaccine. PloS One 2020; 15(1): e0228006. doi: 10.1371/journal.pone.0228006.
  42. Tandel N, Trivedi D, Krishnan AM, et al. Application of radiation technology: a novel vaccine approach to induce protective immunity against malaria infection. In: Osibote A (Ed). Ionizing and non-ionizing radiation. London, UK: IntechOpen 2020; 1-20.
  43. Hafez EN, Ebrahim RM, Barakat AM. Evaluation of the oxidative stress in liver of mice vaccinated with gamma radiation-attenuated Toxoplasma gondii. Int J Radiat Res 2021; 19(2): 339-347.
  44. Boussag-Abib L, Laraba-Djebari F. Long-term antibody response and protective effect induced by attenuated scorpion toxins: involvement of memory plasma cells. Immunobiology 2021; 226(4): 152108. doi: 10.1016/j.imbio.2021.152108.
  45. Sartori GP, da Costa A, Macarini FLDS, et al. Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation. J Venom Anim Toxins incl Trop Dis 2021; 27: e20200140. doi: 10.1590/1678-9199-JVATITD-2020-0140.
  46. Praveen C, Bhatia SS, Alaniz RC, et al. Assessment of microbiological correlates and immunostimulatory potential of electron beam inactivated metabolically active yet non culturable (MAyNC) Salmonella Typhimurium. PloS One 2021; 16(4): e0243417. doi: 10.1371/journal.pone.0243417.
  47. Cui N, Wang Q, Shi W, et al. Synergy of subgroup J avian leukosis virus and Eimeria tenella to increase pathogenesis in specific-pathogen-free chickens. Vet Immunol Immunopathol 2016; 177: 42-47.
  48. Srinivasu B, Preetam VC, Srinivas G, et al. Effect of Cocciban herbal coccidiostats on hematobiochemical, fecal parameters and cecal histopathology of broiler chicken. Trop Anim Health Prod 2019; 51(6): 1375-1381.
  49. Muñoz-Wolf N, McCluskey S, Lavelle EC. The role of inflammasomes in adjuvant-driven humoral and cellular immune responses. In: Schijns VEJC, O'Hagan DT (Eds). Immunopotentiators in modern vaccines. 2nd Cambridge, USA: Academic Press 2017; 23-42.
  50. Silva DG, Cooper PD, Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunol Cell Biol 2004; 82(6): 611-616.