Document Type : Original Article


1 Department of Microbiology, Faculty of Science, Zanjan Branch, Islamic Azad University, Zanjan, Iran

2 Department of Biology, Faculty of Science, Urmia University, Urmia, Iran


Isolation of new microbial species from extreme environments is one of the most efficient approaches for the development of novel bioactive metabolites. The aim of the present study was to explore the pharmaceutical bacterial resources from the water and sediments of hypersaline Lake Urmia. Using different culture conditions and media led to the isolation of 20 bacterial strains. Halophilic bacteria were screened for the production of antibacterial agent against multi-drug resistant strains of Escherichia coli through agar well diffusion assay. Halophilic bacteria DNA extraction was done by boiling method. The results showed that two Halomonas strains, LUH16 and LUH20 identified by analysis of 16S rRNA gene sequences were the potent producers of antimicrobial metabolites against various strains of E. coli. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of eight secondary metabolites with the relevant antimicrobial properties. Our findings led us to focus on Halomonas strains as potent producers of antimicrobial compound that might be an alternative against antibiotic-resistant pathogens such as pathogenic Escherichia coli.


Main Subjects

  1. Jiang HX, Lü DH, Chen ZL, et al. High prevalence and widespread distribution of multi-resistant Escherichia coli isolates in pigs and poultry in China. Vet J 2011; 187(1): 99-103.
  2. O'Neill J. Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance. London, UK: Government of the United Kingdom 2016; 17-46.
  3. Moellering RC Jr. Discovering new antimicrobial agents. Int J Antimicrob Agents 2011; 37(1): 2-9.
  4. Elyasifar B, Jafari S, Hallaj-Nezhadi S, et al. Isolation and identification of antibiotic-producing halophilic bacteria from Dagh Biarjmand and Haj Aligholi salt deserts, Iran. Pharm Sci 2019; 25(1): 70-77.
  5. Donio MB, Ronica FA, Viji VT, et al. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus 2013; 2(1): 149. doi: 10.1186/2193-1801-2-149.
  6. Nadeem F, Oves M, Qari HA, et al. Red Sea microbial diversity for antimicrobial and anticancer agents. J Mol Biomark Diagn 2015; 7(1): 267. doi: 10.4172/2155-9929.1000267.
  7. Eimanifar A, Mohebbi F. Urmia Lake (Northwest Iran): a brief review. Saline Syst 2007; 3: 5. doi: 10.1186/1746-1448-3-5.
  8. Hajizadeh N, Sefidi Heris Y, Zununi Vahed S, et al. Biodegradation of para-amino acetanilide by Halomonas sp. TBZ3. Jundishapur J Microbiol 2015; 8(9): e18622. doi: 10.5812/jjm.18622.
  9. Al-Karablieh N. Antimicrobial activity of Bacillus persicus 24-DSM isolated from Dead Sea mud. Open Microbiol J 2017; 11: 372-383.
  10. Ma'or Z, Henis Y, Alon Y, et al. Antimicrobial properties of Dead Sea black mineral mud. Int J Dermatol 2006; 45(5): 504-511.
  11. Irannejad S, Akhavan Sepahi A, Amoozegar MA, et al. Isolation and identification of halophilic bacteria from Urmia Lake in Iran. Iran J Fish Sci 2015; 14(1): 45-59.
  12. Jookar Kashi F, Owlia P, Amoozegar MA, et al. Diversity of cultivable microorganisms in the eastern part of Urmia salt lake, Iran. J Microbiol Biotechnol Food Sci 2014; 4(1): 36-43.
  13. Zununi Vahed S, Forouhandeh H, Hassanzadeh S, et al. Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. 2011; 80(6): 826-833.
  14. Rezvantalab S, Amrollahi MH. Investigation of recent changes in Urmia Salt Lake. Int J Chem Environ Eng 2011; 2(3): 168-171.
  15. Baird RB, Eaton AD, Rice EW, et al. Standard methods for the examination of water and wastewater. 23rd Washington DC, USA: American Public Health Association. 2017; 60-63.
  16. Gupta S, Sharma P, Dev K, et al. A diverse group of halophilic bacteria exist in Lunsu, a natural salt water body of Himachal Pradesh, India. Springerplus 2015; 4: 274. doi: 10.1186/s40064-015-1028-1.
  17. Benson HJ. Microbiological applications: laboratory manual in general microbiology. 8th New York, USA: McGraw Hill 2002; 76-112.
  18. Mata JA, Martínez-Cánovas J, Quesada E, et al. A detailed phenotypic characterisation of the type strains of Halomonas Species. Syst Appl Microbiol 2002; 25(3): 360-375.
  19. Dziewit L, Pyzik A, Matlakowska R, et al. Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA. BMC Microbiol 2013; 13: 59. doi: 10.1186/1471-2180-13-59.
  20. Sangnoi Y, Chankaew S, O-Thong S. Indigenous Halomonas spp., the potential nitrifying bacteria for saline ammonium waste water treatment. Pak J Biol Sci 2017; 20(1): 52-58.
  21. Tonu NS, Sufian MA, Sarker S, et al. Pathological study on colibacillosis in chickens and detection of Escherichia coli by Bangl J Vet Med 2011; 9(1): 17-25.
  22. Haber M, Ilan M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J Appl Microbiol 2014; 116(3): 519-532.
  23. Singh LS, Sharma H, Talukdar NC. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol 2014; 14: 278. doi: 10.1186/s12866-014-0278-3.
  24. Wilson GS, Raftos DA, Corrigan SL, et al. Diversity and antimicrobial activities of surface-attached marine bacteria from Sydney Harbour, Australia. Microbiol Res 2010; 165(4): 300-311.
  25. Hemraj V, Diksha S, Avneet G. A review on commonly used biochemical test for bacteria. Innovare J Life Sci 2013; 1(1): 1-7.
  26. Hombach M, Zbinden R, Böttger EC. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiol 2013; 13: 225. doi: 10.1186/1471-2180-13-225.
  27. Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014; 20(4): O255-O266.
  28. Miao C, Jia F, Wan Y, et al. Halomonas huangheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. Int J Syst Evol Microbiol 2014; 64(Pt 3): 915-920.
  29. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35(6), 1547-1549.
  30. Russo CAM, Selvatti AP. Bootstrap and rogue identification tests for phylogenetic analyses. Mol Biol Evol 2018; 35(9): 2327-2333.
  31. Ser HL, Palanisamy UD, Yin WF, et al. Presence of antioxidative agent, Pyrrolo [1, 2-a] pyrazine-1,4-dione, hexahydro-in newly isolated Streptomyces mangrovisoli nov. Front Microbiol 2015; 6: 854. doi: 10.3389/fmicb.2015.00854.
  32. Wang Y, Wu YH, Wang CS, et al. Halomonas salifodinae nov., a halophilic bacterium isolated from a salt mine in China. Int J Syst Evol Microbiol 2008; 58(Pt 12): 2855-2858.
  33. Surowiak AK, Lochyński S, Strub DJ. Unsubstituted oximes as potential therapeutic agents. Symmetry 2020; 12(4): 575. doi: 10.3390/sym12040575.
  34. Barghouthi SA, Ayyad I, Ayesh M, et al. Isolation, identification, and characterization of the novel antibacterial agent methoxyphenyl-oxime from Streptomyces pratensis QUBC97 isolate. J Antibio Res 2017; 1(1): 10 doi: 10.15744/2574-5980.1.105.
  35. El-Sayed MH. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (Streptomyces mirabilis strain NSQu-25). World Appl Sci J 2012; 20(9): 1202-1212.
  36. Sharif HB, Mukhtar M, Mustapha Y, et al. Preliminary investigation of bioactive compounds and bioautographic studies of whole plant extract of Euphorbia pulcherrima on Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Pseudomonas aeruginosa. Adv Pharm 2015; 25: 1-14.
  37. Farag MA, Al‐Mahdy DA, Salah El Dine R, et al. Structure-activity relationships of antimicrobial gallic acid derivatives from pomegranate and Acacia fruit extracts against potato bacterial wilt pathogen. Chem Biodivers 2015; 12(6): 955-962.
  38. Ganesh M, Mohankumar M. Extraction and identification of bioactive components in Sida cordata (Burm. f.) using gas chromatography–mass spectrometry. J Food Sci Technol 2017; 54(10): 3082-3091.
  39. Ser HL, Palanisamy UD, Yin WF, et al. Presence of antioxidative agent, Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol 2015; 6: 854. doi: 10.3389/fmicb.2015.00854.
  40. Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Res Int 2014; 2014: 497606. doi: 10.1155/2014/497606.
  41. Senerovic L, Opsenica D, Moric I, et al. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. Adv Exp Med Biol 2020; 1282: 37-69.