Document Type : Original Article


Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran


Staphylococcus aureus is an important pathogen causing a wide range of diseases in both humans and animals. The aim of this research was to screen the vancomycin resistance-associated genes in methicillin-resistant Staphylococcus aureus (MRSA) isolates from animals. A total of 400 nasal swab samples were collected from cattle, goats and sheep between February and August 2022 from both industrial and traditional livestock farms in West Azerbaijan province, Iran. Then, nasal swabs were cultured on mannitol salt agar and molecular analysis was performed after bacteriological examination to confirm the presence of S. aureus. The MecA gene was used to detect MRSA isolates, and two important vancomycin resistance-associated genes, namely vanA and vanB, were searched in the isolates. Out of 400 nasal swabs, 69 samples had S. aureus; of which seven isolates were resistant against methicillin. No vancomycin resistance-associated genes were detected in the MRSA isolates. Based on these findings, vancomycin could be used to treat infections caused by this bacterium.


Main Subjects

  1. Quinn PJ, Marky BK, Carter ME, et al. Veterinary microbiology and microbial disease. 3rd Iowa, USA: State University Press 2002: 536-540.
  2. Giacometti A, Cirioni O, Ghiselli R, et al. Mupirocin prophylaxis against methicillin-susceptible, methicillin-resistant, or vancomycin-intermediate Staphylococcus epidermidis vascular-graft infection. Antimicrob Agents Chemother 2000; 44(10): 2842-2844.
  3. Lowy FD. Staphylococcus aureus N Engl J Med 1998; 339(8): 520-532.
  4. Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3): 603-661.
  5. Kadlec K, Entorf M, Peters T. Occurrence and characteristics of livestock-associated methicillin-resistant Staphylococcus aureus in quarter milk samples from dairy cows in Germany. Front Microbiol 2019; 10: 1295. doi: 10.3389/ fmicb.2019.01295.
  6. Akinduti PA, Obafemi YD, Ugboko H, et al. Emerging vancomycin-non susceptible coagulase negative Staphylococci associated with skin and soft tissue infections. Ann Clin Microbiol Antimicrob 2022; 21: 31. doi: 10.1186/s12941-022-00516-4.
  7. Joklik WK, Willett HP, Amos DB, et al. Zinsser microbiology. 20th Philadelphia, USA: Appletton and Hange 1992: 411-418.
  8. Solomon SL, Oliver KB. Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician 2014; 89(12): 938-941.
  9. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T 2015; 40(4): 277-283.
  10. Lade H, Joo H-S, Kim J-S. Molecular basis of non-β-lactam antibiotics resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11(10): 1378. doi: 10.3390/antibiotics11101378.
  11. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus Antimicrob Agents Chemother 2000; 44(6): 1549-1555.
  12. Tosun I, Udo EE, Noronha B, et al. Emergence of rifampicin resistance in methicillin-resistant Staphylococcus aureus isolated at a Turkish university hospital. Microb Drug Resist 2005; 11(1): 48-52.
  13. Gottleib CDC reports first case of vancomycin resistant Staphylococcus aureus. BMJ 2003; 326(7393): 783. PMCID: PMC1169341.
  14. Périchon B, Courvalin P. VanA-type vancomycin-resistance Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53(11): 4580-4587.
  15. Münch D, Engels I, Müller A, et al. Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin. Antimicrob Agents Chemother 2015; 59(2): 772-781.
  16. Singh M, Chang J, Coffman L, et al. Hidden mode of action of glycopeptide antibiotics: inhibition of wall teichoic acid biosynthesis. J Phys Chem B 2017; 121(16): 3925-3932.
  17. Nikooei M, Meidani M, Khorvash F, et al. Evaluation of the frequency of phenotype and genotype of van A and van B genes in Vvancomycin resistant Enterococcus isolated from clinical sample of Alzahra hospitals in Isfahan [Persian]. J Shahrekord Univ Med Sci 2014; 16(3): 61-69.
  18. Mai-siyama IB, Okon KO, Adanu NB, et al. Methicillin-resistant Staphylococcus aureus (MRSA) colonization rate among ruminant animals slaughtered for human consumption and contact persons in Maiduguri, Nigeria. Afr J Microbiol Res 2014; 8(7): 2643-2649.
  19. Quinn PJ, Markey BK, Leonard FC, et al. Veterinary microbiology and microbial disease. 2nd New Jersey, USA: Wiley-Blackwell 2011; 900-928.
  20. Saadat S, Solhjoo K, Norooz-Nejad MJ, et al. VanA and vanB positive vancomycin-resistant Staphylococcus aureus among clinical isolates in Shiraz, south of Iran. Oman Med J 2014; 29(5): 335-339.
  21. Performance standards for antimicrobial susceptibility testing. 21st informational supplement. Wayne, USA: Clinical and Laboratory Standards Institute 2021.
  22. Kumar A, Kaushik P, Anjay, et al. Prevalence of methicillin-resistance Staphylococcus aureus skin and nasal carriage isolates from bovines and its antibiogram. Vet World 2017; 10(6): 593-597.
  23. Saderi H, Ôwlia P, Zafarghandi N, et al. Evaluation of antibiotic resistance in Staphylococcus aureus isolated from nose of two teaching hospitals staff of Shahed university [Persian]. J Mazandaran Univ Med Sci 2004; 14(42): 69-75.
  24. Eshraghi SS, Talebi M, Pourshafie M, et al. The prevalence and molecular characterization of vancomycin resistant Gram-positive cocci isolated from patients in Tehran [Persian]. Iran J Med Microbiol 2007; 1(3): 9-15.
  25. Macori G, Giacinti G, Bellio A, et al. Molecular epidemiology of methicillin-resistance and methicillin-susceptible Staphylococcus aureus in ovine dairy chain and in farm-related humans. Toxins (Basel) 2017; 9(5): 161. doi: 10.3390/toxins9050161.
  26. Thati V, Shivannavar CT, Gaddad SM. Vancomycin resistant among methicillin resistant Staphylococcus aureus isolates from intensive care units of tertiary care hospitals in Hyderabad. Indian J Med Res 2011; 134(5): 704-708.
  27. Abdelgadeir LM, Elhassan MM. Van B positive vancomycin-resistant Staphylococcus aureus among clinical isolates in Shendi city, northern Sudan. IOSR J Dent Med Sci 2015; 14(3): 87-91.
  28. Sancak B, Ercis S, Menemenlioglu D, et al. Methicillin-resistant Staphylococcus aureus hetero- geneously resistant to vancomycin in a Turkish university hospital. J Antimicrob Chemother 2005; 56(3): 519-523.
  29. Ahmadishoar S, Nahaei MR, Mozafari NA. Sensitivity of Staphylococcus aureus strains isolated from clinical specimens against vancomycin by using E-test in Tabriz [Persian]. Med J Tabriz Univ Med Sci Health Serv 2008; 30(2): 17-23.
  30. Vasileiou NGC, Chatzopoulos DC, Sarrou S, et al. Role of Staphylococci in mastitis in sheep. J Dairy Res 2019; 86(3): 254-266.
  31. Vautor E, Jay C, Chevalier N, et al. Characterization of 26 isolates of Staphylococcus aureus, predominantly from dairy sheep, using four different techniques of molecular epidemiology. J Vet Diag Invest 2005; 7(4): 363-368.
  32. El-Deeb W, Cave R, Fayez M, et al. Methicillin resistant Staphylococci isolated from goats and their farm environments in Saudi Arabia genotypically linked to known human clinical isolates: a pilot study. Microbiol Spectr 2022; 10(4): e0038722. doi: 10.1128/ spectrum.00387-22.
  33. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res 2019; 21: 169-176.