Document Type : Original Article

Authors

1 Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran

2 Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran

Abstract

Various companion birds, including budgerigars, are anesthetized with injectable anesthesia. The current study aimed to evaluate oxidative stress indices including malondialdehyde (MDA), total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) along with clinical parameters such as the time required to induce, maintain and recover from medetomidine-ketamine anesthesia and midazolam-ketamine anesthesia in budgerigars. Among 20 mature and healthy budgerigars, three groups were assigned as follows: Control (n = 4) to determine baseline oxidative stress indices medetomidine + ketamine (n = 8) anesthetized by intramuscular injections of medetomidine (0.04 mg kg-1) and ketamine (30.00 mg kg-1) in the pectoral muscles, midazolam + ketamine (n = 8) anesthetized by intramuscular injections of midazolam (1.00 mg kg-1) and ketamine (50.00 mg kg-1). Half of birds (n = 4) in the second and third groups were euthanized by cervical dislocation 1 hr after anesthesia induction, blood samples were collected directly from the heart, and sera were extracted. Additionally, the remaining birds were euthanized 24 hr later, and their serum was analyzed for oxidative stress indices. Clinical parameters were recorded during the study. Compared to the medetomidine + ketamine group, the midazolam + ketamine group experienced shorter induction, anesthetic, and recovery times. Administering medetomidine and ketamine elevated TOS levels compared with midazolam + ketamine. No significant difference was found between the test groups for TAC, MDA, or OSI. Therefore, the midazolam + ketamine regimen appears superior to medetomidine + ketamine when performing minor surgeries on budgerigars.

Keywords

Main Subjects

  1. Gunkel C, Lafortune M. Current techniques in avian anesthesia. Semin Avian Exot Pet Med 2005; 14(4): 263-276.
  2. Lierz M, Korbel R. Anesthesia and analgesia in birds. J Exot Pet Med 2012; 21(1): 44-58.
  3. Miller W, Buttrick M. Current anesthesia recommendations for companion birds. Iowa State Univ Vet 1999; 61(2): 67-75.
  4. Zamani Moghadam A, Bigham Sadegh A, Sharifi S, et al. Comparison of intranasal administration of diazepam, midazolam and xylazine in pigeons: Clinical evaluation. Iran J Vet Sci Technol 2009; 1(1): 19-26.
  5. Javdani Gandomani M, Ghashghaii A, Tamadon A, et al. Comparison of anaesthetic effects of ketamine-xylazine and ketamine-diazepam combination in budgerigar. Vet Scan 2011; 6(1): Article 81.
  6. Balko JA, Lindemann DM, Allender MC, et al. Evaluation of the anesthetic and cardiorespiratory effects of intramuscular alfaxalone administration and isoflurane in budgerigars (Melopsittacus undulatus) and comparison with manual restraint. J Am Vet Med Assoc 2019; 254(12): 1427-1435.
  7. Grimm KA, Lamont LA, Tranquilli WJ, et al. Lumb and Jones' veterinary anesthesia and analgesia. 5th Hoboken, USA: Wiley Blackwell 2015; 283-287.
  8. Laurence LB, Randa HD, Bjorn CK. Goodman & Gilman's: The Pharmacological Basis of Therapeutics. 13th San Diego, USA: McGraw Hill 2017; 391-392.
  9. Durrani UF, Khan MA, Ahmad SS. Comparative efficacy (sedative and anaesthetic) of detomidine, ketamine and detomidine-ketamine cocktail in pigeons (Columba livia). Pakistan Vet J 2008; 28(3): 115-118.
  10. Azizpour A, Hassani, Y. Clinical evaluation of general anaesthesia in pigeons using a combination of ketamine and diazepam. J S Afr Vet Assoc 2012; 83(1): 12. doi: 10.4102/jsava.v83i1.12.
  11. Kaya M, Nisbet HO, Cenesiz M. Comparative evaluation of clinical efficiency of intramuscular diazepam-ketamine, medetomidine-ketamine, and xylazine-ketamine anaesthesia in Ring-necked pheasants (Phasianus colchicus). Iran J Vet Res 2019; 20(1): 13-18.
  12. Rehman MU, Aslam S, Iqbal N, et al. Comparative efficacy of injectable and inhalation anesthesia in pigeons. Adv Anim Vet Sci 2020; 8(11): 1203-1210.
  13. Langan JN, Ramsay EC, Blackford JT, et al. Cardiopulmonary and sedative effects of intramuscular medetomidine-ketamine and intravenous propofol in ostriches (Struthio camelus). J Avian Med Surg 2000; 14(1): 2-7.
  14. Lichtenberger M, Ko J. Anesthesia and analgesia for small mammals and birds. Vet Clin North Am Exot Anim Pract 2007; 10(2): 293-315.
  15. Feng XJ, Hu XY, Zhang S, et al. Effects of the dexmedetomidine, midazolam, butorphanol, and atropine combination on plasma oxidative status and cardiorespiratory parameters in raccoon dogs (Nyctereutes procyonoides). Vet Med - Czech 2015; 60(8): 450-455.
  16. Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006; 8(9-10): 1865–1879.
  17. Godin DV, Garnett ME. Effects of various anesthetic regimens on tissue antioxidant enzyme activities. Res Commun Chem Pathol Pharmacol 1994; 83(1): 93-101.
  18. Türkan H, Bukan N, Sayal A, et al. Effects of halothane, enflurane, and isoflurane on plasma and erythrocyte antioxidant enzymes and trace elements. Biol Trace Elem Res 2004; 102(1-3): 105-112.
  19. Aydilek N. Comparison between xylazine-tiletamine-zolazepam and fentanyl-tiletamine-zolazepam anaesthetic combinations on plasma oxidative status in sheep. Acta Vet Brno 2007; 76(4): 573-578.
  20. Sánchez -Conde P, Rodríguez-López JM, Nicolás JL, et al. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesth Analg 2008; 106(2): 371-378.
  21. Maiti SK, Tiwary R, Vasan P, et al. Xylazine, diazepam and midazolam premedicated ketamine anaesthesia in white Leghorn cockerels for typhlectomy. J S Afr Vet Assoc 2006; 77(1): 12-18.
  22. Javdani Gandomani M, Tamadon A, Mehdizadeh A, et al. Comparison of different ketamine-xylazine combinations for prolonged anaesthesia in budgerigars (Melopsittacus undulatus). VetScan 2009; 4(1): Article 34.
  23. Trevisan GA, da Silva EL, de Carvalho AL, et al. Anesthetics effects of intranasal or intramuscular association of midazolam and racemic or S+ketamine in budgerigars (Melopsittacus undulatus) [Portuguese]. Ciênc Anim Bras 2016; 17(1): 126-132.
  24. Lotfi F, Abedi Gh, Asghari A, et al. Clinical and histopathological comparison of metamizole and midazolam as premedication in pigeon [Persian]. Vet Clin Pathol 2016; 9(36): 317-326.
  25. Yayla S, Kiliç E, Aydin U, et al. Comparative evaluation of intramuscular, intranasal, oral and intraosseal administration of midazolam, ketamine combination in quail (Coturnix coturnix japonica). Dicle Üniv Vet Fak Derg 2018; 11(2): 60-63.
  26. Reves JG, Fragen RJ, Vinik HR, et al. Midazolam: pharmacology and uses. Anesthesiology 1985; 62(3): 310-324.
  27. Sadegh AB. Comparison of intranasal administration of xylazine, diazepam, and midazolam in budgerigars (Melopsittacus undulatus): clinical evaluation. J Zoo Wildl Med 2013; 44(2): 241-244.
  28. Kotzampassi K, Kolios G, Manousou P, et al. Oxidative stress due to anesthesia and surgical trauma: importance of early enteral nutrition. Mol Nutr Food Res 2009; 53(6): 770-779.
  29. Lorente L, Rodriguez ST, Sanz P, et al. Association between pre-transplant serum malondialdehyde levels and survival one year after liver transplantation for hepatocellular carcinoma. Int J Mol Sci 2016; 17(4): 500. doi: 10.3390/ijms17040500.
  30. Leffa DD, Bristot BN, Damiani AP, et al. Anesthetic ketamine-induced DNA damage in different cell types in vivo. Mol Neurobiol 2016; 53(8): 5575-5581.
  31. Alirezaei M, Rezaei M, Hajighahramani S, et al. Oleuropein attenuates cognitive dysfunction and oxidative stress induced by some anesthetic drugs in the hippocampal area of rats. J Physiol Sci 2017; 67(1): 131-139.
  32. Schimites PI, Segat HJ, Teixeira LG, et al. Gallic acid prevents ketamine-induced oxidative damages in brain regions and liver of rats. Neurosci Lett 2020; 714: 134560. doi: 10.1016/j.neulet.2019.134560.
  33. Harman F, Hasturk AE, Yaman M, et al. Neuroprotective effects of propofol, thiopental, etomidate, and midazolam in fetal rat brain in ischemia-reperfusion model. Childs Nerv Syst 2012; 28(7): 1055-1062.
  34. Chong WS, Hyun CL, Park MK, et al. Midazolam protects B35 neuroblastoma cells through Akt-phosphorylation in reactive oxygen species derived cellular injury. Korean J Anesthesiol 2012; 62(2): 166-171.
  35. Liu JY, Guo F, Wu HL, et al. Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway. Mol Med Rep 2017; 15(1): 169-179.
  36. Li Y, Li X, Zhao J, et al. Midazolam attenuates autophagy and apoptosis caused by ketamine by decreasing reactive oxygen species in the hippocampus of fetal rats. Neuroscience 2018; 388: 460-471.
  37. Sha J, Zhang H, Zhao Y, et al. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicol Appl Pharmacol 2019; 364: 144-152.
  38. Zhou Y, Yang P, Xie Y, et al. Dexmedetomidine protects against LPS-induced lung injuries in mice through alleviation of inflammation and oxidative stress. Int J Clin Exp Med 2019; 12(4): 3294-3304.
  39. Peltoniemi MA, Hagelberg NM, Olkkola KT, et al. Ketamine: a review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clin Pharmacokinet 2016; 55(9): 1059-1077.
  40. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38(12): 1103-1111.
  41. Yilmaz N, Aydin O, Yegin A, et al. Increased levels of total oxidant status and decreased activity of arylesterase in migraineurs. Clin Biochem 2021; 44(10-11): 832-837.
  42. Wright SW, Chudnofsky CR, Dronen SC, et al. Midazolam use in the emergency department. Am J Emerg Med 1990; 8(2): 97-100.
  43. Fragen RJ. Pharmacokinetics and pharmacodynamics of midazolam given via continuous intravenous infusion in intensive care units. Clin Ther 1997; 19(3): 405-419.