Document Type : Original Article


1 Department of Veterinary Public Health, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, India

2 Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, India

3 Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, India

4 Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, India

5 Department of Microbiology, Gauhati Medical College, Srimanta Sankaradeva University of Health Sciences, Guwahati, India


Staphylococcus aureus are Gram positive bacteria known to acquire antibiotic resistance rapidly and pose a major challenge to clinicians worldwide. Infections by methicillin resistant Staphylococcus aureus (MRSA) are usually associated with increased mortality and prolonging of treatment. Samples (n = 706) from diverse sources (livestock, pets, animal handlers, human hospital) were collected and screened for the presence of MRSA by phenotypic and genotypic methods. The incidence of Staphylococcus aureus was greater in goats (42.00%; 28.20 - 56.80%, confidence interval [CI] 95.00%) followed by cattle (13.50%; 9.20 - 18.80%, CI 95.00%), humans (12.90%; 9.30 - 17.40%, CI 95.00%) and dogs (12.90%; 8.10 - 19.20%, CI 95.00%). Significantly higher incidence of MRSA was observed in dogs (65.00%; 40.80 - 84.60%, CI 95.00%), compared to other hosts namely cattle (48.00%; 26.50 - 64.30%, CI 95.00%), humans (35.00%; 20.20 - 52.50%, CI 95.00%) and goats (10.00%; 1.20 - 30.40%, CI 95.00%). All the S. aureus isolates were further screened for thermostable nuclease (nuc gene) by polymerase chain reaction (PCR). The incidence of nuc gene in cattle, dog, goat and human were found to be 3.30% (1.30 - 6.60%, CI 95.00%), 5.20% (2.30 - 9.90%, CI 95.00%), 28.00% (16.20 - 42.50%, CI 95.00%) and 9.10% (6.00 - 13.00%, CI 95.00%), respectively. Comparative evaluation of two PCR primers (mecA-162 and mecA-310) indicated the former one as more rational choice for detection of MRSA. Overall, the results of our study indicated possible risk of zoonotic transmission of MRSA from canines.


Main Subjects

  1. Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 2018; 31(4): e00020-18 doi: 10.1128/CMR.00020-18.
  2. Aires-de-Sousa M. Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin Microbiol Infect 2017; 23(6): 373-380.
  3. Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in animals. Microbiol Spectr 2019; 7(3). doi: 10.1128/microbiolspec.GPP3-0060-2019.
  4. García-Álvarez L, Holden MT, Lindsay H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011; 11(8): 595-603.
  5. Mehndiratta PL, Bhalla P. Use of antibiotics in animal agriculture & emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones: need to assess the impact on public health. Indian J Med Res 2014; 140(3): 339-344.
  6. Venugopal N, Mitra S, Tewari R, et al. Molecular detection and typing of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci isolated from cattle, animal handlers, and their environment from Karnataka, Southern Province of India. Vet world 2019; 12(11): 1760-1768.
  7. Yadav R, Kumar A, Singh VK, et al. Prevalence and antibiotyping of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in domestic animals in India. J Glob Antimicrob Resist 2018; 15: 222-225.
  8. Zehra A, Gulzar M, Singh R, et al. Comparative analysis of methicillin-resistant Staphylococcus aureus (MRSA) and borderline oxacillin resistant Staphylococcus aureus (BORSA) in community and food of animal origin. FEMS Microbiol Lett 2020; 367(23). fnaa201.doi: 10.1093/femsle/fnaa201.
  9. Krishnamoorthy P, Hamsapriya S, Ashwini M, et al. Systematic review and meta-analysis of livestock associated-methicillin resistant Staphylococcus aureus (LA-MRSA) prevalence in animals in India. Int J Livest Res 2019; 9(3). 179-191.
  10. National Dairy Development Board. NDDB strengthening dairy farming in Eastern and North Eastern India. Published 2022. Accessed February 21, 2022.
  11. Rajkhowa S, Sarma DK, Pegu SR. SCC mec typing and antimicrobial resistance of methicillin-resistant Staphylococcus aureus (MRSA) from pigs of Northeast India. Vet Res Commun 2016; 40(3-4): 117-122.
  12. Viswanathan V, Pendsey S, Radhakrishnan C, et al. Methicillin-resistant Staphylococcus aureus in diabetic foot infection in India: A growing menace. Int J Low Extrem Wounds 2019; 18(3): 236-246.
  13. Mehta Y, Hegde A, Pande R, et al. Methicillin-resistant Staphylococcus aureus in intensive care unit setting of India: a review of clinical burden, patterns of prevalence, preventive measures, and future strategies. Indian J Crit Care Med 2020; 24(1): 55-62.
  14. Tarai B, Das P, Kumar D. Recurrent challenges for clinicians: emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance, and current treatment options. J Lab Physicians 2013; 5(2): 71-78.
  15. Indian Network for Surveillance of Antimicrobial Resistance (INSAR) group I. Methicillin resistant Staphylococcus aureus (MRSA) in India: prevalence & susceptibility pattern. Indian J Med Res 2013; 137(2): 363-369.
  16. Bhattacharya S, Bir R, Majumdar T. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a tertiary care hospital, Tripura, Northeast India. J Clin Diagn Res 2015; 9(9): DC01-DC04.
  17. Bhowmik D, Chetri S, Paul D, et al. Detection and molecular typing of methicillin-resistant Staphylococcus aureus from northeastern part of India. Med J Armed Forces India 2019; 75(1): 86-89.
  18. Talukdar A, Barman R, Sarma A, et al. Bacteriological profile and antibiotic sensitivity pattern of clinical isolates in a tertiary cancer care center in the northeast India. South Asian J Cancer 2020; 9(2): 115-119.
  19. Palavecino EL. Rapid methods for detection of MRSA in clinical specimens. Methods Mol Biol 2020; 2069: 29-45.
  20. van Belkum A, Rochas O. Laboratory-based and point-of-care testing for MSSA/MRSA detection in the age of whole genome sequencing. Front Microbiol 2018; 9: 1437. doi: 10.3389/fmicb.2018.01437.
  21. Geha DJ, Uhl JR, Gustaferro CA, et al. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol 1994; 32(7): 1768-1772.
  22. Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46(7): 2155-2161.
  23. Cruickshank R, Duguid JP, Marmion BP, et al. Medical microbiology; a guide to the laboratory diagnosis and control of infection. 12th Edinburgh, UK: Churchill Livingstone 1973; 1-587.
  24. Martineau F, Picard FJ, Roy PH, et al. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol 1998; 36(3): 618-623.
  25. EUCAST disk diffusion method for antimicrobial susceptibility testing. Version 6.0. Available at: https: // Accessed 30 April 2023.
  26. Zhang K, Sparling J, Chow BL, et al. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol 2004; 42(11): 4947-4955.
  27. Fagundes H, Barchesi L, Filho AN, et al. Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil. Braz J Microbiol 2010; 41(2): 376-380.
  28. Anderson KL, Lyman R, Moury K, et al. Molecular epidemiology of Staphylococcus aureus mastitis in dairy heifers. J Dairy Sci 2012; 95(9): 4921-4930.
  29. Pu W, Su Y, Li J, et al. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS One 2014; 9(2): e88134. doi: 10.1371/journal. pone.0088134.
  30. Mitra SD, Velu D, Bhuvana M, et al. Staphylococcus aureus spa type t267, clonal ancestor of bovine subclinical mastitis in India. J Appl Microbiol 2013; 114(6): 1604-1615.
  31. Karzis J, Petzer IM, Naidoo V, et al. The spread and antimicrobial resistance of Staphylococcus aureus in South African dairy herds - a review. Onderstepoort J Vet Res 2021; 88(1): e1-e10. doi: 10.4102/ojvr. v88i1.1937.
  32. Shittu AO, Taiwo FF, Froböse NJ, et al. Genomic analysis of Staphylococcus aureus from the West African Dwarf (WAD) goat in Nigeria. Antimicrob Resist Infect Control 2021; 10(1): 122. doi: 10.1186/s13756-021-00987-8.
  33. Zhou Z, Zhang M, Li H, et al. Prevalence and molecular characterization of Staphylococcus aureus isolated from goats in Chongqing, China. BMC Vet Res 2017; 13: 352. doi: 10.1186/s12917-017-1272-4.
  34. Piva S, Mariella J, Cricca M, et al. Epidemiologic case investigation on the zoonotic transmission of Staphylococcus aureus infection from goat to veterinarians. Zoonoses Public Health 2021; 68(6): 684-690.
  35. Goldstein EJ. Bite wounds and infection. Clin Infect Dis 1992; 14(3): 633-638.
  36. Hoekstra KA, Paulton RJ. Clinical prevalence and antimicrobial susceptibility of Staphylococcus aureus and intermedius in dogs. J Appl Microbiol 2002; 93(3): 406-413.
  37. Hatlen TJ, Miller LG. Staphylococcal skin and soft tissue infections. Infect Dis Clin North Am 2021; 35(1): 81-105.
  38. Sapkota J, Sharma M, Jha B, et al. Prevalence of Staphylococcus aureus isolated from clinical samples in a tertiary care hospital: a descriptive cross-sectional study. JNMA J Nepal Med Assoc 2019; 57(220): 398-402.
  39. Karakonstantis S, Kalemaki D. Evaluation and management of Staphylococcus aureus bacteriuria: an updated review. Infection 2018; 46(3): 293-301.
  40. Al Mohajer M, Musher DM, Minard CG, et al. Clinical significance of Staphylococcus aureus bacteriuria at a tertiary care hospital. Scand J Infect Dis 2013; 45(9): 688-695.
  41. Davis JA, Jackson CR, Fedorka-Cray PJ, et al. Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Lett Appl Microbiol 2014; 59(1): 1-8.
  42. Kutar K, Verma AK, Sharma B, et al. Analysis of mecA gene and antibiotic resistance in Staphylococcus aureus isolates from bovine mastitis. Indian J Comp Microbiol Immunol Infect Dis 2015; 36(1): 22-27.
  43. Haran KP, Godden SM, Boxrud D, et al. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J Clin Microbiol 2012; 50(3): 688-695.
  44. Tacconelli E, De Angelis G, Cataldo MA, et al. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? a systematic review and meta-analysis. J Antimicrob Chemother 2008; 61(1): 26-38.
  45. Wang YZ, Wang Y, Han X, et al. Prevalence and resistance analysis of Staphylococcus aureus in clinical healthy goats. Chin Anim Husb Vet Med 2011; 38(3): 167-169.
  46. Caruso M, Latorre L, Santagada G, et al. Methicillin-resistant Staphylococcus aureus (MRSA) in sheep and goat bulk tank milk from Southern Italy. Small Rumin Res 2016; 135: 26-31.
  47. Berends ET, Horswill AR, Haste NM, et al. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2010; 2(6): 576-586.
  48. Sahebnasagh R, Saderi H, Owlia P. The prevalence of resistance to methicillin in Staphylococcus aureus strains isolated from patients by PCR method for detection of mecA and nuc genes. Iran J Public Health 2014; 43(1): 84-92.
  49. Karmakar A, Jana D, Dutta K, et al. Prevalence of Panton-Valentine leukocidin gene among community acquired Staphylococcus aureus: a real-time PCR study. J Pathog 2018; 2018: 4518541. doi: 10.1155/2018/ 4518541.