Histology
Nilgün Kuru; Mustafa Öztop; Emel Demirbağ; Nazlı Ercan
Volume 14, Issue 9 , September 2023, , Pages 471-479
Abstract
Organisms have evolved defense mechanisms to protect themselves from stressful conditions. The expression of heat shock proteins is considered a valid indication of protection from the adverse effects of hostile conditions. In this study, we used immunohistochemistry to investigate the seasonal effects ...
Read More
Organisms have evolved defense mechanisms to protect themselves from stressful conditions. The expression of heat shock proteins is considered a valid indication of protection from the adverse effects of hostile conditions. In this study, we used immunohistochemistry to investigate the seasonal effects of some abiotic factors on heat shock protein 70 and 90 (HSP70 and HSP90) expression in the liver, gills, and muscle tissues of 24 Common carp (Cyprinus carpio) caught in Karataş Lake (Burdur, Türkiye) using gillnets of various mesh sizes. We also measured some physicochemical parameters on-site at sampling time and took water samples for further analyses of other physicochemical parameters and heavy metals. Immunostaining for HSP90 was stronger than for HSP70 in both liver and gill samples. Liver and gill structures exhibited significant seasonal differences in HSP70 and HSP90 immunoreactivity, and the same was true for immunostaining for HSP70 and HSP90 in muscle samples. Some physicochemical properties seemed to vary considerably between seasons, with Fe, Mn, and Zn levels tending to exhibit changes throughout the seasons. However, these levels were considered acceptable for human health. In conclusion, this study suggests that substantial changes in HSP70 and HSP90 expression may be essential for seasonal adaptation and tolerance. Further research on fish HSPs would greatly contribute to aquaculture, which is essential for meeting food requirements.
Saeed Seifi; Parisa Sedighara; Afsaneh Mohajer
Volume 13, Issue 4 , December 2022, , Pages 507-512
Abstract
In the recent years, the use of medicinal plants to reduce the effects of mycotoxins in foods and feeds has been considered. This study was conducted to investigate the effects of Aloe vera on performance, serum biochemical parameters and liver histopathology in laying hens fed on aflatoxin B1 (AFB1)-contaminated ...
Read More
In the recent years, the use of medicinal plants to reduce the effects of mycotoxins in foods and feeds has been considered. This study was conducted to investigate the effects of Aloe vera on performance, serum biochemical parameters and liver histopathology in laying hens fed on aflatoxin B1 (AFB1)-contaminated diet. Seventy-two White Leghorns (Hy-Line W-36) were randomly allocated to four treatments. 1) basal diet (control), 2) control plus 1.00 mg kg-1 AFB1, 3) control diet plus 1.00 mg kg-1 AFB1 + 100 ppm Aloe vera powder, and 4) control diet plus 1.00 mg kg-1 AFB1 + 300 ppm Aloe vera powder. Each treatment consisted of three replicates of 6 birds. Egg weight and Haugh units were not affected by AFB1. Egg production and eggshell thickness were lower for groups fed 1.00 mg kg-1 AFB1. Egg production, egg weight and eggshell thickness were improved by incorporation of Aleo vera in the AFB1 contaminated feed but were not significant. Chickens fed AFB1 had significantly lower aspartate aminotransferase (AST), alanine aminotransferase (ALT) and uric acid and higher cholesterol than other groups. Aloe vera powder improved levels of cholesterol, uric acid, AST, and ALT. AFB1 also caused histopathological changes in liver tissues, such as vacuolar degeneration, fatty infiltration, and necrosis. The addition of Aloe vera powder to the aflatoxin containing diet reduced the severity of lesions in liver. The data demonstrated the ability of Aloe vera to reduce the adverse effects of AFB1 exposure in laying hens.
Clinical Pathology
Mahsa Hasanzadeh-Moghadam; Mohammad Hassan Khadem-Ansari; Gholam Hossein Farjah; Yousef Rasmi
Volume 9, Issue 2 , June 2018, , Pages 129-135
Abstract
Myocardial infarction is commonly considered as a leading cause of cardiovascular disease taking the lives of seven million people annually. Liver dysfunction is associated with cardiac diseases. The profile of abnormal liver functions in heart failure is not clearly defined. This study was designed ...
Read More
Myocardial infarction is commonly considered as a leading cause of cardiovascular disease taking the lives of seven million people annually. Liver dysfunction is associated with cardiac diseases. The profile of abnormal liver functions in heart failure is not clearly defined. This study was designed to investigate the protective effects of betaine on liver injury after myocardial infarction induced by isoprenaline in rats. Forty-eight male rats were divided into four groups: the control group received normal diet and the experimental groups received 50, 150, and 250 mg kg-1 body weight of betaine daily through gastric gavages for 60 days. All of experimental and control groups experienced myocardial infarction, induced by subcutaneous injection of 100 mg kg-1 isoprenaline in two consecutive doses )8:00 AM to 8:00 PM). Liver enzymes including aspartate transaminase (AST) and alanine transaminase (ALT) were significantly reduced in the groups treated with betaine, compared with the control group. The total antioxidant capacity in the experimental groups, treated with betaine, showed a significant increase, compared with the control group. In the control group, severe lesions were created in the liver tissue, while degenerative changes of liver tissue significantly reduced in groups treated with different doses of betaine, showing the repair of liver tissue. Betaine decreased apoptosis in the experimental groups in comparison with the control group. Betaine showed a protective effect against biochemical and histological changes in liver tissue caused by the induction of myocardial infarction via isoprenaline injection.
Hossein Tajik; Aligholi Ramin; Shahram Nozad; Babak Jelodari; Zohreh Eftekhari; Sina Ramin
Volume 3, Issue 4 , December 2012, , Pages 275-279
Abstract
Lipids in liver wet and dry matter, liver moist and dry matter and their relationships were investigated based on species, sex and age in cows, buffaloes, sheep and goats. Mean percentage of lipids in liver wet and dry matter and liver dry matter in cows were 3.60%, 1.10%, 29.70%, and for buffaloes were ...
Read More
Lipids in liver wet and dry matter, liver moist and dry matter and their relationships were investigated based on species, sex and age in cows, buffaloes, sheep and goats. Mean percentage of lipids in liver wet and dry matter and liver dry matter in cows were 3.60%, 1.10%, 29.70%, and for buffaloes were 5.30%, 1.55%, 29.20%, sheep 3.00%, 0.83%, 27.90%, and goats 2.910%, 1.55% and 28.40%, respectively. The highest and lowest percentage of lipids in liver wet and dry matter was observed in buffaloes and sheep, and for the liver dry matter was recorded in cows and sheep, respectively. Analyses showed significant differences in liver parameters among ruminants (p < 0.01). Gender, except for goats, did not affect the animals' liver parameters. In overall 15.00% of buffaloes and 3.50% of cows showed over 10.00% lipids in liver, while none of small ruminants appeared to have over 6.00% lipids in liver. There was no correlation between liver lipid and liver dry matter. In conclusion mean percentage of lipid in liver dry matter in small ruminants was less than large ruminants. Liver dry matter was high in cows and low in sheep. Mean differences in liver parameters was significant, while the age and sex of the animals were not. Liver lipidosis in buffaloes seems greater than in cows, and in small ruminants it was negligible. No correlation was expected between liver parameters. Finally, on the basis of liver dry matter, the liver in ruminants ranked from cows to buffaloes, goats and sheep.
Siavash Ahmadi-Noorbakhsh; Saeed Azizi; Bahram Dalir-Naghadeh; Masoud Maham
Volume 3, Issue 2 , June 2012, , Pages 125-130
Abstract
Oxygen is an essential part of the most important metabolic pathways in aerobic organisms. Oxygen delivery is merely dependent on blood, rendering blood loss a devastating event. Traumatic pre-hospital liver bleeding is a major cause of early trauma deaths in human and animals, with no established therapeutic ...
Read More
Oxygen is an essential part of the most important metabolic pathways in aerobic organisms. Oxygen delivery is merely dependent on blood, rendering blood loss a devastating event. Traumatic pre-hospital liver bleeding is a major cause of early trauma deaths in human and animals, with no established therapeutic method yet. Increasing intra-abdominal pressure (IAP) has been shown to reduce liver bleeding by half. Although reduction of blood loss could be in favor of blood oxygen delivery, however, the complex interaction between increased IAP and respiratory mechanics during severe hemorrhagic shock remained unclear. We used a novel model of liver trauma in 16 rabbits and randomly assigned them to either normotensive abdomen group or increased IAP by fluid infusion (HA) groups (n=8 each). Liver size and the amount of liver injury were evaluated. Various blood oxygenation parameters were recorded. Both groups were identical in terms of the liver size and injury. The HA group had significantly lower shock index. Arterial oxygen capacity and oxygen content were higher in the HA group. No significant statistical difference was seen between groups in terms of abdominal perfusion pressure; alveolar pressure of oxygen; dissolved oxygen in blood plasma; alveolar to arterial oxygen tension gradient; arterial to alveolar oxygen pressure ratio; the ratio between partial pressure of arterial oxygen and fraction of inspired oxygen; and respiratory index. In conclusion, the novel therapeutic method of increasing IAP by fluid infusion in a rabbit model of liver hemorrhage preserved blood oxygenation better than the classic therapeutic method.